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Abstract 

Outlier detection has received significant attention in many applications, such as 

credit card fraud detection and network intrusion detection. Most of the existing research 

efforts focus on numerical datasets and cannot be directly applied to categorical sets 

where there is little sense in ordering the data and calculating distances among data 

points. Furthermore, a number of the current outlier detection methods require quadratic 

time with respect to the dataset size and usually need multiple scans of the data; these 

features are undesirable when the datasets are large and scattered over multiple 

geographically distributed sites. In this paper, we focus and evaluate, experimentally, a 

few representative current outlier detection approaches (one based on entropy and two 

based on frequent itemsets) that are geared towards categorical sets. In addition, we 

introduce a simple, scalable and efficient outlier detection algorithm that has the 

advantage of discovering outliers in categorical datasets by performing a single scan of 

the dataset. This newly introduced outlier detection algorithm is compared with the 

existing, and aforementioned outlier detection strategies. The conclusion from this 

comparison is that the simple outlier detection algorithm that we introduce is more 

efficient (faster) than the existing strategies, and as effective (accurate) in discovering 

outliers. 
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CHAPTER 1 Introduction 

Mining for outliers in data is an important research field with many applications 

in credit card fraud detection, discovery of criminal activities in electronic commerce, 

and network intrusion detection. Outlier detection approaches focus on discovering 

patterns that occur infrequently in the data, as opposed to traditional data mining 

techniques that attempt to find patterns that occur frequently in the data. One of the most 

widely accepted definitions of an outlier pattern is provided by Hawkins [1]: “An outlier 

is an observation that deviates so much from other observations as to arouse suspicion 

that it was generated by a different mechanism.” 

Outliers are frequently treated as noise that needs to be removed from a dataset in 

order for a specific model or algorithm to succeed (e.g. points not belonging in clusters in 

a clustering algorithm). However, lately it has been acknowledged that outlier detection 

techniques can lead to the discovery of important information in the data, “one person’s 

noise is another person’s signal” [2]. On the other hand, any outlier detection strategy can 

also be used for the cleaning of the data before any traditional data-mining algorithm is 

applied on the data.  Examples of data where the discovery of outliers is useful are 

irregular credit card transactions, indicating potential credit card fraud [3], or patients 

who exhibit abnormal symptoms due to their suffering from a specific disease or ailment 

[4]. 

Most of the research efforts in outlier detection strategies have focused on 

datasets that are comprised of numerical attributes or ordinal attributes that can be 
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directly mapped into numerical values. Quite often, when we have data with categorical 

attributes, it is assumed that the categorical attributes could be easily mapped into 

numerical values. However, there are cases of categorical attributes where this mapping 

to numerical attributes is not a straightforward process, and the results greatly depend on 

the mapping that is used (e.g., the mapping of a marital status attribute (Married or 

Single) or a person’s profession (engineer, financial analyst, etc.) to a numerical 

attribute).  

Recently there has been some focus on data with categorical or mixed attributes 

(e.g. He et al.[5], [6],[7], and Otey et al. [8]). Yet, these efforts have not been contrasted 

to each other and they have been evaluated using different datasets. In this thesis, we 

explore some of these methods and evaluate them on the same datasets with regard to 

their efficiency (speed), scalability, and effectiveness (accuracy) in detecting outliers in 

categorical data. 

Another issue that has only recently become a focus in the literature is related to 

the large and distributed nature of the datasets available today. With the explosion of 

technology, the size of data for a particular application has grown and will continue to 

grow. In addition, most of the data is distributed among different sites belonging to the 

same or different organizations. Transferring the data to a central location and then 

detecting outliers is usually impractical because of the size of the data and the expense of 

constantly moving it, without accounting for data ownership and control issues.  

Hence, successful outlier detection strategies must perform well and be scalable 

as the size and dimensionality of the dataset grows. Furthermore, in order to deal with the 
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distributed nature of the data, the communication overhead and synchronization between 

the different sites in which the data resides should be minimized; consequently, the 

passes over the data should be minimal. In this paper, we introduce a simple outlier 

detection strategy for categorical datasets called Attribute-Value Frequency (AVF), 

which performs and scales well, and would work efficiently for datasets that are 

geographically distributed over a number of sites. We compare this simple algorithm with 

He’s [5-7] and Otey’s [8] algorithms from the perspective of accuracy (in terms of 

finding the outliers) and speed (of finding the outliers in the data).  
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CHAPTER 2 Background 

2.1 Literature Review 

2.1.1 Statistical-Model-Based 

The earliest approaches used to detect outliers were statistical-model-based, 

which assumed that a parametric model described the distribution of the data (e.g., 

normal distribution) and the data was mostly single-dimensional or univariate [9, 10]. 

The drawbacks of these approaches include the difficulty of finding a right model for 

each dataset and associated application, as well as their efficiency decreases as the 

dimensions of the dataset increases [8, 10]. Another issue with high dimensional datasets 

is that the dataset becomes less dense, which makes the convex hull harder to determine 

(“Curse of Dimensionality”) [11]. There are some methods, like the Principal Component 

Analysis, that can help alleviate this problem. Another idea to handle higher dimensional 

datasets is to organize the data points in layers based on the idea that shallow layers tend 

to contain outliers more often than the deep layers (e.g. [12, 13]); in practice, however, 

these ideas are impractical for more than two dimensions. 

2.1.2 Distance-Based 

Distance-based approaches do not make any assumptions about the distribution of 

the data because they essentially compute the distances among points. However, this 

leads to high computational complexity (e.g. nearest neighbor approach that has quadratic 
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complexity with respect to the dataset size). This renders them impractical for large 

datasets. 

 

Figure 1 Distance-Based Method 

Distance-based methods will have a problem finding local outlier o2 [14] 

There have been improvements of the original distance-based algorithms, such as Knorr’s 

et al. [2], where an outlier is defined as an object O in a dataset T that has at least a 

fraction p of the objects in T lying further than distance D from it. The complexity of 

their proposed approach, however, is still exponential on the number of nearest 

neighbors. Finally, Bay and Schwabacher [15] randomize the data for efficient pruning of 

the search space, so that even though the worst-case algorithmic complexity is quadratic, 

the algorithm in practice becomes closer to linear complexity. 

2.1.3 Clustering 

Clustering techniques can be used with the idea that the points that do not belong 

in the formed clusters are designated as outliers. Shekhar et al. [16] use a graph to reflect 

the connections between each point. However, this technique is applicable only when a 

graph of the data can be constructed. Clustering-based methods are focused on 

optimizing clustering measures of goodness, and not on finding the outliers in the data 

[2]. 
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2.1.4 Density Based 

Density-based methods focus on estimating the density distribution of the input 

space and identifying outliers as those lying in regions of low density. Breunig et al. [14] 

assign a degree of outlier-ness to each data point: they calculate a local outlier factor 

(LOF) for each point based on the ratios of the local density of the area around the point 

and the local densities of its neighbors. The size of the local neighborhood of a point is 

determined by the area containing a user-given minimum number of points (MinPts). 

Papadimitriou et al. in [17] present a similar technique called LOCI (Local Correlation 

Integral) which tackles the issue of choosing values for MinPts in the previous technique 

(LOF) by using statistical values based on the data itself. All density-based techniques 

have the advantage that they can detect outliers that are missed by techniques with a 

single, global criterion, as can be seen in Figure 1. However, in high-dimensional spaces 

the data is almost always sparse, which leads to problems with density-based methods 

[18]. 

2.1.5 Others  

There have been other research efforts, such as [19], where the Support Vector 

Data Description (SVDD) is proposed. This method obtains a spherically shaped 

boundary around a dataset that can be made flexible by using a variety of kernel 

functions. In [20], Replicator Neural Networks (RNNs) are used to detect outliers. More 

recently, [21] looked into using only a few fixed reference points to rank the data points, 

resulting in algorithmic complexity of ��	 · � · log ��, where R is the number of 

reference points and n is the size of the dataset.  
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All the aforementioned methods are geared towards numerical data and thus are 

more applicable to numerical datasets or data where ordinal data can be easily 

transformed to suitable numerical values [11]. In the case of categorical datasets, there is 

not much sense in ordering the data and then mapping them to numerical values (e.g., 

distance between two values such as TCP Protocol and UDP Protocol [8]). Consequently, 

methods such as distance-based, density-based, etc. are deemed unsuitable. Moreover, a 

number of these methods are quadratic in complexity with respect to the data size, n, 

which would be unacceptable for very large datasets. In addition, if a distributed setting is 

assumed, employing algorithms that depend on pair-wise distance computations is 

infeasible, as the different sites would have to either exchange all of their local data 

points in order to calculate the distances or replicate all data points in every local 

database. 

2.2 Related Prior Research 

In this research, we implemented and experimented with three current outlier 

detection approaches directed towards categorical data. The first is proposed by He et al. 

[6] and is based on the idea of Entropy. The second technique by Otey et al. [8] focuses 

on datasets with mixed attributes (both categorical and numerical). The third technique is 

discussed in [7], another paper by He et al. The methods presented in [7] by He and in [8] 

by Otey are based on scoring each data point using the concept of frequent itemsets (see 

[22]). Wei et al. [18] also deal with outliers in categorical datasets and use frequent 

itemsets. In [18], the authors use hyperedges, which simply store frequent itemsets along 

with the data points that contain these frequent itemsets. Because their method is based 
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on frequent itemsets and built on a premise quite similar to that in [7], it was not 

considered in our experiments. Finally, Xu et al. [23] use mutual reinforcement to 

discover outliers in a mixed attribute space. However, their method focuses on a slightly 

different outlier detection problem. Instead of discovering local outliers as noise, they 

identify local outliers in the center, where they are similar to some clusters on one hand 

and unique on the other. 
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CHAPTER 3 Algorithms 

In this section, we describe the algorithms for outlier detection presented in [6], 

[7], and [8]. This chapter first explains the entropy-based algorithms presented in [6]. 

Subsequently, it discusses a more efficient algorithm derived from the entropy-based 

method. Then it discusses two scoring algorithms based on frequent itemset mining that 

are presented in [7] and [8]. In addition, we present a simple example to exhibit how each 

algorithm works to discover outliers.  

3.1 Entropy-Based Algorithms 

The Greedy algorithm takes as an input the desired number of outliers (k). All 

points in the set are initially non-outliers. We formulate the set of outliers by conducting 

k scans over the dataset to iteratively determine the top k outliers. During each scan, we 

remove every non-outlier individually from the dataset and recalculate the total entropy 

of the system. The data point that has the maximum impact on the total entropy is the 

point that lowers the entropy the most when removed. 

3.1.1 Entropy 

The entropy, E(Xl) of an attribute Xl of a dataset, that describes the degree of 

“disorder” that this attribute contributes to the dataset, is defined as follows: 
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����� � � � ������ log���������
��

���
 

where, in the above equation, Vl denotes the number of attribute values of attribute Xl, 

and ������ denotes the probability with which value ��� of attribute Xl is assumed. The 

entropy of a random variable (in our case the attribute X) is attributed to Shannon [24]. 

Shannon also defined the entropy of a multi-dimensional random variable (or the multiple 

attributes corresponding to a dataset). In the case where the attributes are independent, 

the entropy (disorder) of the multiple attributes of a dataset is equal to the sum of the 

entropies of each one of the attributes and is defined as follows:  

����� � ����� � � � ����� 

There is a major overhead due to calculating the entropy and frequencies of each 

attribute value. We solve this time complexity using Google’s open source hash table, 

which is highly optimized [25]. One hash table is necessary for each individual attribute, 

resulting in m hash tables using attribute values as hash keys and the frequency as the 

referred value. 

3.1.2 Greedy Algorithm 

He et al. use the above entropy definition to detect the outliers in the data. In 

particular, a Local-Search heuristic based Algorithm (LSA) is introduced in [5], and a 

Greedy Algorithm is introduced in [6], both relying on the entropy idea. Because the 

Greedy algorithm is an improvement on the LSA and is consequently superior, we will 

only focus on the Greedy algorithm. The Greedy algorithm takes as an input the desired 
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number of outliers (k). All points in the set are initially designated as non-outliers. To 

formulate the set of outliers we conduct k scans over the dataset to determine the top k 

outliers. During each scan, we remove every non-outlier individually from the dataset and 

recalculate the total entropy of the system. The non-outlier data point that results in the 

maximum decrease for the entropy of the dataset is the outlier data-point that the 

algorithm removes. 

The complexity of the Greedy algorithm is ��� · � · � ·  �, where n designates 

the size of the dataset, k is the number of outlier points, m is the number of attributes in 

the dataset, and V designates the number of distinct attribute values, per attribute. If the 

number of attribute values per attribute V is a small number, the complexity of Greedy 

becomes equal to ��� · � · ��. The pseudocode of the Greedy algorithm is provided in 

Figure 2. 
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Algorithm: Greedy 
Input: Dataset – D 
  Target number of outliers – k 
Output: k detected outliers 

 

label all data points ��, ��, … , �#as non-outliers 
calculate initial frequency of each attribute value and update hash 

table 
calculate initial entropy 
counter = 0  
while ( counter != k ) do 
 counter++ 
 while ( not end of database ) do 
  read next record x labeled non-outlier 
  label x as outlier 
  calculate decrease in entropy 
  if ( maximal decrease achieved by record o ) 
   update hash tables using o 
   add x to set of outliers 
  end if 
 end while 
end while 

Figure 2 Pseudocdoe for the Greedy Algorithm 

3.2 Attribute-Value Frequency (AVF) Algorithm 

Although the algorithms discussed in the previous section scale linearly with 

respect to the number of data points, n, they still need k scans over the dataset to find k 

outliers, which is a disadvantage for very large datasets and/or datasets that are 

distributed among different sites. It is intuitive that outliers are those points which are 

infrequent in the dataset. Under the assumption of independent attributes, we could claim 

that the infrequent-ness of a data-point in the dataset is strongly correlated with the 

infrequent-ness of the value of every coordinate of this data-point. The infrequent-ness of 

the value of every coordinate of a data-point is calculated by computing how frequently 

this value is assumed by the corresponding attribute.  
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More specifically, for each attribute Xl, we compute the probability, ������, of 

each value ��� that attribute Xl can assume (note that this probability is a frequency-based 

definition of probability and this is why the name of this algorithm (AVF) was chosen as 

such). We then designate a score for each point x in the dataset as the average of all these 

probabilities, which we define below: 

$ % &'()*�� � ��, ��, … , ��� �   1
� � � �����,��� - ��

��

�

�

���
 

We named this outlier detection algorithm Attribute Value Frequency (AVF) 

algorithm. With AVF, we first calculate the probability of each attribute value, then we 

calculate the average of these probabilities of each attribute value corresponding to the 

point of interest. Once the score of all the points is calculated, we designate the k points 

with the smallest score values as the k outliers. The complexity of AVF is ��� · ��. As a 

reminder Greedy’s complexity is ��� · � · ��. Using AVF, the outliers are identified 

after only one scan of the dataset, instead of k scans that are needed by Greedy in order to 

identify k outliers. The algorithm’s pseudocode is presented in Figure 3. 
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Algorithm: AVF 
Input: Dataset – D 
  Target number of outliers – k 
Output: k detected outliers 

 

label all data points ��, ��, … , �# as non-outliers 
foreach point x 
 foreach attribute m 
  update frequency table 
 end 
end 
foreach point x 
 calculate average frequency for each attribute 
end 
 
identify top k outliers 

Figure 3 Pseudocode for the Attribute-Value Frequency (AVF) Algorithm 

3.3 Frequent Itemset Mining Based Algorithms 

In this section, we describe two algorithms that use the concept of frequent 

itemset mining in order to create an outlier score for each data point in the dataset. Using 

this score, they identify the top k  outliers. These algorithms differ from the outlier 

detection algorithms described in sections 3.1 and 3.2, because they take into account the 

association of attributes with each other. Frequent Itemset Mining or Frequent Pattern 

Mining is part of Association Rule Mining, which has received considerable attention 

since the seminal paper on this subject by Agrawal and Srikant [22]. These are described 

below: 

3.3.1 Frequent Itemset Mining 

Given a dataset D and a set of r literals S={i1, i2, …, ir} that are found in D, we 

can define an itemset I as a non-empty subset of S. For example, items in a supermarket 

could be “bread”, “milk”, etc; then a possible itemset I could be {“bread”, “milk”}. 
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Given a user-defined threshold called minimum support, minsup, a frequent itemset F is 

one that appears in the dataset at least minsup times. Frequent itemset mining in a dataset 

D with a threshold minsup results in a set of frequent itemsets or patterns, denoted as 

FPS(D, minsup). The support of an itemset I, designated as support(I), is the percentage 

of data points in D that contain itemset I. 

3.3.2 Find Frequent Pattern Outlier Factor (FindFPOF) 

He et al. in [7] observe that because frequent itemsets are “common patterns” that 

are found in many of the points of the dataset, outlier detection algorithms can be 

discovered by relying upon the concept of frequent itemsets. Hence, they define a 

Frequent Pattern Outlier Factor (FPOF) for every data point based on the support of the 

frequent itemsets contained in the data point. In addition, they use a contradictness score 

in order to describe the reasons why the identified outliers are abnormal, based on the 

itemsets that are not contained in the detected outlier data. The contradictness score is 

used to better explain the outliers and not to detect the outliers, so it is omitted from our 

discussion. The FPOF outlier score is calculated as follows: 

%.�% &'()*��� � ∑ 01��()2�%�345,3-367�8,��#9:;�
<%.&�=, �>�01��<  

The FPOF score of a point is the summation of the support of all of the frequent subsets F 

of the data point over the total size of the FPS (D, minsup), which is the number of all 

frequent sets in the dataset D. The idea is that data points with small FPOF values (small 

number of frequent subsets) are likely to be outliers. The outlier algorithm, FindFPOF, 

runs the Apriori algorithm first, to identify all of the frequent patterns in dataset D with a 
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threshold minsup, designated by FPS(D, minsup). Then, the outlier score for each data 

point x is calculated. The algorithm uses the FPOF values to identify the top k outliers. 

The pseudocode for the FindFPOF algorithm is given in Figure 4. 

Algorithm: FindFPOF 
Input: Dataset – D 
  Minimum support - minsup 
  Target number of outliers – k 
Output: k detected outliers 

  
FPS(D, minsup) = Mine for frequent item sets in D  
foreach data point x in D 
 foreach frequent pattern F in FPS(D, minsup) 
  if x contains F 

outlier_score(x) +=  support(F) / sizeof(FPS(D, 
minsup)) 

  endif 
 end 
end  
identify top k outliers 

Figure 4 Pseudocode for the FindFPOF Algorithm [7] 

3.3.3 Fast Distributed Outlier Detection (FDOD) 

The method by Otey et al. in [8] is also based on the concept of frequent itemsets. 

The authors detect outliers by assigning to each point an anomaly score inversely 

proportional to the support of its infrequent itemsets. The way to handle the continuous 

attributes is to maintain a covariance matrix for each itemset. We have not considered 

continuous attributes since our focus is on categorical data, so we omit this part from our 

discussion. Specifically, in [8] the authors calculate an anomaly score for each data point 

x, which is given below: 

�2*?@0 &'()*��� � � 1
|B|C45

    |    01��()2�B� D �>�01� 
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which can be explained as follows: for each point x, we find all subsets I of x which are 

infrequent, i.e. their support is less than minsup. Then, the anomaly score of x, will be 

equal to the sum of the inverse of the length of the infrequent itemsets. If a point has very 

few frequent patterns, its outlier factor will be high. Thus, the outliers are those k points 

with the maximum outlier score in the previous equation. This algorithm is very similar 

to FindFPOF in that it first mines the dataset D for the frequent itemsets and then an 

outlier score is calculated for each point in dataset D.  

An example for the algorithm in Otey et al. [8] is given in Figure 5. Given the 

itemset lattice in the figure, P1 has a score of 0 because all its subsets are frequent, while 

P2 contains 2 infrequent subsets, {abd}, {bd}, so its anomaly score equals the sum of the 

inverse of their length, i.e. (1/3+1/2). 

 

Figure 5 Example for Otey’s Algorithm [8] 

The pseudocode for this algorithm is given in Figure 6. The authors state that the 

execution time is linear to the dataset size, n, but exponential to the number of categorical 

attributes. They also try to limit the lattice levels (i.e. the maximum levels in the tree that 

contains the frequent itemsets) that they search as part of their algorithm, in order to 

achieve better execution times. However, as their results in [8] show, this affects their 

detection rates in a negative way. 
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Algorithm: FDOD 
Input: Dataset – D 
  Minimum support - minsup 
  Target number of outliers – k 
Output: k detected outliers 

  
FPS(D, minsup) = Mine for frequent item sets in D  
  
foreach point x in D  
 foreach itemset I in x 
  if FPS(D, minsup) does not contain I 
   outlierScore(x) +=  1/length(I) 
  endif 
 end 
end  
identify top k outliers 

Figure 6 Pseudocode for the FDOD Algorithm [8] 

The most straightforward method of carrying out this algorithm is to find all of 

the combinations each point contains and searching for them in the set of all frequent 

itemsets. However, this proves to be very time expensive. Based on probability theory, 

we derive a quicker method. We can achieve the same outcome a lot faster if we compute 

the total combinations of length j we can possibly have for the m attributes and then find 

how many are infrequent if we decrease that number by the number of frequent subsets 

(itemsets) for that point. 

First, we calculate the number of combinations for each possible outcome using 

the combination function. The combination function describes the number of ways of 

picking k outcomes from n possibilities: 

EF# � G�
�H � �!

�! · �� � ��! 

For example, G3
2H � 3 combinations of two elements from the set {1, 2, 3} → {1, 2}, {1, 

3} and {2, 3}. We can then check if the current point contains any of the frequent 
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itemsets, which is a faster operation. If a frequent itemset is found, the count of the 

number of subsets or itemsets for that size is decremented. In the end, we are left with the 

number of infrequent itemsets for each size, which is all the information we need to 

calculate the outlier score. The modified pseudocode is presented below in Figure 7. 

Algorithm: Modified FDOD 
Input: Dataset – D 
  Minimum support - minsup 
  Target number of outliers – k 
Output: k detected outliers 

 
FPS(D, minsup) = Mine for frequent item sets in D  
foreach transaction x in D 
 calculate all combinations and store in vector v 
 foreach frequent pattern F in FPS(D, minsup) 
  if x contains F   

update v – decrement number of combinations for the 
size of F 

  endif 
 end 
  
 foreach combination c in vector v 
  outlier_score(x) +=  c * 1/position in vector 
 end 
end  
identify top k outliers 

Figure 7 Modified FDOD Pseudocode 

3.4 Examples 

This section uses the example originally presented in [7] to demonstrate how each 

algorithm works. The dataset shown in Table 1 consists of ten customers with the 

attributes Age-range, Car, and Salary-level and two attribute values each. The values 

distinguished with bold text (Customers 5, 6, 8, and 10) are the customers considered 

outliers, since they contain attribute-values occurring less frequently. 
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Customers Age-Range Car Salary-Level 

1 Middle Sedan Low 

2 Middle Sedan High 

3 Young Sedan High 

4 Middle Sedan Low 

5 Young Sports High 

6 Young Sports Low 

7 Middle Sedan High 

8 Young Sports Low 

9 Middle Sedan High 

10 Young Sports Low 

Table 1 Customer Information 

3.4.1 Greedy 

As stated previously, the Greedy algorithm uses entropy calculations to determine 

which points lower the entropy the most. Assume the target number of outliers is four. 

Table 2 illustrates the effect of removing each individual point during four passes over 

the dataset. In this example, during each pass over the dataset it is obvious which points 

minimize the entropy the most, thus revealing the outliers. 

Initial Total Entropy: 2.97 2.90 2.77 2.44 

 Entropy Impact 

Remove Customer First Pass Second Pass Third Pass Fourth Pass 

1 2.97 2.95 2.83 2.49 

2 2.97 2.91 2.83 2.57 

3 2.97 2.86 2.71 2.30 

4 2.97 2.95 2.83 2.49 

5 2.90 - - - 

6 2.90 2.77 - - 

7 2.97 2.91 2.83 2.57 

8 2.90 2.77 2.44 - 

9 2.97 2.91 2.83 2.57 

10 2.90 2.77 2.44 1.57 

Minimum: 2.90 2.77 2.44 1.57 

Table 2 Entropy Calculations for Example in Table 1 
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3.4.2 Attribute-Value Frequency Based (AVF) Algorithm 

The AFV algorithm first calculates the frequency of each attribute value, which is 

shown for this example in Table 3. 

Attribute Values Frequency 

Middle 0.5 

Young 0.5 

Sedan 0.6 

Sports 0.4 

Low 0.5 

High 0.5 

Table 3 Frequency of Attribute Value for Example in Table 1 

As seen in Table 4, we calculate the average frequency of attribute values 

contained by each individual customer. 

Customers Average Frequency 

1 0.53 

2 0.53 

3 0.53 

4 0.53 

5 0.47 

6 0.47 

7 0.53 

8 0.47 

9 0.53 

10 0.47 

Table 4 Average Frequency of Attribute Values for Each Customer for Example in 

Table 1 

As a result, it is obvious that customers 5, 6, 8 and 10 are outliers because of their 

low average frequency value. 
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3.4.3 Find Frequent Pattern Outlier Factor (FindFPOF) 

The first step in the FindFPOF algorithm is the Apriori algorithm, which is the 

frequent itemset mining phase. This stage takes a minimum support threshold as an input. 

For the purpose of this example, the minimum support is 0.5. The execution of the 

Apriori algorithm results in the frequent patterns shown in Table 5. 

Pattern Support 

Middle 0.5 

Young 0.5 

Sedan 0.6 

Low 0.5 

High 0.5 

Middle, Sedan 0.5 

Table 5 Frequent Itemsets for Example in Table 1 

With the frequent itemsets detected, we are able to calculate the FPOF score for 

each customer. We calculate the scores shown in Table 6 by summing the support of each 

pattern the customer contains and dividing by the total number of frequent itemsets. 

Customers FPOF 

1 0.35 

2 0.35 

3 0.27 

4 0.35 

5 0.17 

6 0.17 

7 0.35 

8 0.17 

9 0.35 

10 0.17 

Table 6 FPOF Calculations for Example in Table 1 

Because of the FPOF score, it is obvious customers 5, 6, 8 and 10 are outliers 

because of their low score. 
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3.4.4 Fast Distributed Outlier Detection (FDOD) 

As in the FindFPOF algorithm, the first step in the FDOD algorithm is the 

frequent itemset mining phase and the minimum support is 0.5. The execution of the 

Apriori algorithm results in the frequent patterns shown in Table 5 

To calculate the outlier score using Otey’s method, we sum one over the length of 

the infrequent itemsets each individual customer contains. For this example, the scoring 

results in Table 7. 

Customers Outlier Score 

1 1.33 

2 1.33 

3 1.83 

4 1.33 

5 2.83 

6 2.83 

7 1.33 

8 2.83 

9 1.33 

10 2.83 

Table 7 Outlier Score Using Otey’s Method for Example in Table 1 

The outlier score easily identifies points 5, 6, 8 and 10 as the outliers because of 

their high score. 
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CHAPTER 4 Experiments and Results 

4.1 Experimental Design 

4.1.1 Hardware 

We conduct all experiments on a workstation with a Pentium 4 2.6 GHz processor 

and 1.5 GB of RAM as the benchmark. We also ran the experiments on a 2.0 GHz 

Pentium Core Duo laptop with similar results. 

4.1.2 Data Processing 

We consider two issues with the datasets. First, most of our datasets have values 

that can be considered categorical; however, some have numeric (continuous) attributes. 

We discretize this data using the equal-frequency method in [26], and then treat these 

attributes as categorical. We handle missing values by either eliminating the missing 

values, or by considering the unknowns as an additional attribute value. In addition, for 

the frequent itemset-based algorithms, the minimum threshold is 0.1. 

4.2 Datasets 

We experimented with five real datasets from the UCI Machine Learning 

repository [27] and a set of artificially-generated datasets based on the work described in 

[5, 6] using Cristofor’s software [28]. Using simulated data has the advantage that we can 

experiment with as many data points as needed. In addition, we can experiment with 
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different values for the dimensionality of the data.  We discuss these datasets in the 

following sections. 

4.2.1 Wisconsin Breast Cancer 

The Wisconsin breast cancer dataset contains 699 records with 9 attributes. For 

the purpose of this experiment, all attributes are considered categorical. There are 458 

benign records of that dataset and 241 malignant records, which are 65.5% and 34.5% of 

that dataset respectively. All unknown values are removed from the dataset. Following 

the method used by [20], we only kept every sixth malignant record in order to create a 

more imbalanced distribution, resulting in 39 malignant outliers (8%) and 444 benign 

non-outliers (92%). 

4.2.2 Lymphography 

The purpose of the lymphography dataset is to detect abnormal lymph nodes. This 

dataset contains 148 instances and 19 attributes including the class label. Classes 2 

(metastases) and 3 (malign lymph) make up about 96% of the dataset, while 1 (normal 

find) and 4 (fibrosis) account for approximately 4%. This dataset does not contain 

unknown values. 

4.2.3 Post-operative Patients 

The task of the post-operative dataset is to determine where to place patients after 

surgery, i.e. Intensive Care Unit, home, or general hospital floor. This dataset contains 90 
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instances and 9 attributes including the class label. There are three classes with 2, 24, and 

64 instances respectively. We handle every attribute as categorical. There are three 

unknown values, which we handle as an extra attribute value because the dataset is so 

small. 

4.2.4 Page Blocks 

The purpose of the page blocks dataset is to separate text from graphic areas. This 

dataset contains 5,473 instances with 10 attributes. We reduce the size of the dataset by 

half to make it more imbalanced. To do this every other outlier is removed from the 

dataset. There are five classes: text, horizontal line, vertical line, graphic, and picture. 

Text makes up about 90% of dataset, while the rest make up 10%. We discretize its four 

continuous attributes using equal-frequency and a max value of 20. The rest of the 

attributes are handled as categorical values. 

4.2.5 Simulated 

The experiments conducted with the simulated data were used to display the 

efficiency (speed) and associated scalability of the algorithms that we are evaluating; not 

their detection rates/capabilities (effectiveness). The idea behind these experiments is to 

see how the performance of each algorithm under investigation changes as specific data 

parameters change (e.g., the size of the dataset, n). Another data parameter that we 

experimented with is m, which is the dimensionality of the dataset. For example, Greedy 

calculates the Entropy for each point and each attribute. In addition, the Frequent Itemset 

based algorithms will need to create and search through many more frequent itemsets as 
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the dimensionality increases. Finally, it is worth mentioning that the Greedy algorithm is 

also dependent on the input number of outliers, k, while the performance of the other 

three algorithms should not change for different values of k. 

We create simulated datasets based on the experiments described in [5, 6]. For all 

experiments, we used a random seed generator of 5. For the first three datasets, the input-

k is a constant value of 30. The first dataset has 10 attributes, 10 distinct attribute values 

per attribute, and varies at 1k, 10k, 30k, 50k, 100k, 200k, 300k, 400k, 500k, 600k, 700k, 

and 800k data points. The second dataset contains 100,000 points, 10 distinct attribute 

values per attribute, and the number of attributes varies at 2, 5, 10, 20, and 30. The third 

dataset has 100,000 data points, 10 attributes, and the number of distinct attribute values 

varies at 5, 10, 20, 30, and 40. The fourth and final created dataset has 100,000 data 

points, 10 attributes, 10 attribute values per attribute, and input target k varies at 1, 10, 30, 

50, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000. 

4.3 Results 

The following section presents all of the results for the real datasets (Wisconsin 

Breast Cancer, Lymphography, Post-operative Patients, and Page Blocks) and simulated 

datasets (Varying Data Size, Varying Number of Attributes, Varying Number Attribute 

Values, and Varying Input-k). 
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4.3.1 Wisconsin Breast Cancer 

Because of its imbalanced distribution, the Wisconsin breast cancer dataset is a 

good dataset to analyze the rate at which the algorithms discover the outliers. Table 8 

shows the results (the number of actual outliers found by each algorithm) for different 

input-k values. The percentage of total outliers is the number of outliers detected out of 

the total number of outliers. 

Table 8 Results (Outliers Detected) for All Outlier Detection Algorithms using the 

Wisconsin Breast Cancer 

The algorithms differ from each other very slightly and are approximately equally 

effective at discovering the outliers. This fact is also demonstrated in Figure 8. 

 Greedy AVF FindFPOF FDOD 

k No. 
Found 

% of 
Total 
Outliers 

No. 
Found 

% of 
Total 
Outliers 

No. 
Found 

% of 
Total 
Outliers 

No. 
Found 

% of 
Total 
Outliers 

4 4 10.26 4 10.26 3 7.69 3 7.69 

8 8 20.51 7 17.95 7 17.95 7 17.95 

16 15 38.46 14 35.90 14 35.90 15 38.46 

24 22 56.41 21 53.85 21 53.85 21 53.85 

32 29 74.36 28 71.79 27 69.23 28 71.79 

40 33 84.62 32 82.05 31 79.49 33 84.62 

48 37 94.87 36 92.31 35 89.74 37 94.87 

56 39 100.00 39 100.00 39 100.00 39 100.00 
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Figure 8 Input Target Outliers, k, vs. Actual Outliers Found for the Wisconsin 

Breast Cancer Dataset 

All algorithms perform equivalently. 

Table 9 displays the results presented in [6], which are on par with our results 

except for two values. Our version of the Greedy algorithm detects one more actual 

outlier with a k input of 48, while our FindFPOF implementation detects one fewer with k 

input of 32. Since they only differ by one outlier, these different results are given no 

importance. The differences can be justified by the calculation accuracy of each 

implementation. 

k Greedy FindFPOF 

4 4 (10.26%) 3 (7.69%) 
8 7 (17.95%) 7 (17.95%) 
16 15 (38.46%) 14 (35.90%) 
24 22 (56.41%) 21 (53.85%) 
32 27 (69.23%) 28 (71.79%) 
40 33 (84.62%) 31 (79.49%) 
48 36 (92.31%) 35 (89.74%) 
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k Greedy FindFPOF 

56 39 (100%) 39 (100%) 

Table 9 Results for Greedy and FindFPOF as Presented in the Original Papers 

The literature’s results match those in Table 8. 

Table 10 presents the Probabilities of False Alarm and Miss. The Probability of 

False Alarm is the number of points detected as outliers that are truly non-outliers over 

the total number of non-outliers.  

.)(LML>N>2? (O %MN0* $NM)� � � � P1�L*) (O �12N>*)0 %(1�Q
P1�L*) (O P(��12N>*)0  

The Probability of Miss is the number of true outliers that were not detected (missed) 

over the total number of actual outliers in the dataset. 

.)(LML>N>2? (O R>00 � S(2MN P1�L*) (O �12N>*)0 � P1�L*) (O �12N>*)0 %(1�Q
S(2MN P1�L*) (O �12N>*)0  

Probability of False Alarm Probability of Miss 

k Greedy AVF FindFPOF FDOD Greedy AVF FindFPOF FDOD 

4 0.0 0.0 0.2 0.2 89.7 89.7 92.3 92.3 
8 0.0 0.2 0.2 0.2 79.5 82.1 82.1 82.1 
16 0.2 0.5 0.5 0.2 61.5 64.1 64.1 61.5 
24 0.5 0.7 0.7 0.7 43.6 46.2 46.2 46.2 
32 0.7 0.9 1.1 0.9 25.6 28.2 30.8 28.2 
40 1.6 1.8 2.0 1.6 15.4 17.9 20.5 15.4 
48 2.5 2.7 2.9 2.5 5.1 7.7 10.3 5.1 
56 3.8 3.8 3.8 3.8 0.0 0.0 0.0 0.0 

Table 10 Wisconsin Breast Cancer Probability of False Alarm and Probability of Miss 

The Probability of Miss quickly approaches zero, while the Probability of False 

Alarm increases slightly. 

To better illustrate the relationship between the Probability of Miss and the 

Probability of False Alarm, we present Figure 9. This figure represents the ideal 

relationship between the Probability of False Alarm and the Probability of Miss. The 
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Probability of False Alarm increases very little, while the Probability of Miss quickly 

approaches zero. 

 

Figure 9 Probability of False Alarm vs. Probability of Miss for Greedy Algorithm 

using Breast Cancer Dataset 

This figure illustrates that as the Probability of Miss converges to zero, the 

Probability of False Alarm increases. The Probability of False Alarm is negligible 

considering all outliers are detected. 

4.3.2 Lymphography 

Like the Wisconsin breast cancer dataset, the lymphography dataset is very 

imbalanced and results in the detection of all outliers. Table 11 presents the rates at which 

the algorithms converge on the outliers in the lymphography dataset. 
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Table 11 Results (Outliers Detected) for All Outlier Detection Algorithms using the 

Lymphography Dataset 

The Greedy algorithm converges on the number of outliers the quickest, followed by 

AVF, FindFPOF and FDOD. Below, in Figure 10, it is apparent the algorithms converge 

at slightly different rates. 

 Greedy AVF FindFPOF FDOD 

k No. 
Found 

% of Total 
Outliers 

No. 
Found 

% of Total 
Outliers 

No. 
Found 

% of Total 
Outliers 

No. 
Found 

% of Total 
Outliers 

2 2 33.33 2 33.33 2 33.33 2 33.33 

4 4 66.67 4 66.67 4 66.67 4 66.67 

6 5 83.33 4 66.67 4 66.67 4 66.67 

8 6 100.00 5 83.33 5 83.33 5 83.33 

12 6 100.00 6 100.00 5 83.33 5 83.33 

13 6 100.00 6 100.00 5 100.00 6 100.00 

15 6 100.00 6 100.00 6 100.00 6 100.00 
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Figure 10 Input Target Outliers, k, vs. Actual Outliers Found for the 

Lymphography Datset 

Greedy detects all the six outliers the quickest, followed by AVF, FindFPOF and 

FDOD. 

The algorithms for this dataset also converge on the outliers with a very low 

Probability of False Alarm. Note that the presence of non-outliers is negligible when all 

outliers have been detected. 

Probability of False Alarm Probability of Miss 

k Greedy AVF FindFPOF FDOD Greedy AVF FindFPOF FDOD 

2 0.0 0.0 0.0 0.0 66.7 66.7 66.7 66.7 
4 0.0 0.0 0.0 0.0 33.3 33.3 33.3 33.3 
6 0.7 1.4 1.4 1.4 16.7 33.3 33.3 33.3 
8 1.4 2.1 2.1 2.1 0.0 16.7 16.7 16.7 
12 4.2 4.2 4.9 4.9 0.0 0.0 16.7 16.7 
13 4.9 4.9 5.6 4.9 0.0 0.0 16.7 0.0 
15 6.3 6.3 6.3 6.3 0.0 0.0 0.0 0.0 

Table 12 Lymphography Probabilities of False Alarm and Probability of Miss 

The Probability of False Alarm is negligible considering the Probability of Miss is 

zero. 
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4.3.3 Post-operative Patients 

The post-operative patients dataset is not as imbalanced as the other datasets 

discussed earlier. In addition, the attributes do not define the data points into distinct 

classes, i.e. outliers and non-outliers. As a result, none of the algorithms detect all of the 

outliers. See Table 13 for more information. 

Table 13 Results (Outliers Detected) for All Outlier Detection Algorithms using the 

Post-operative Patients Dataset 

Though none of the algorithms converge on all of the outliers in the dataset, it is 

important to note that all of the algorithms detect the outliers at the same rate, as seen in 

Figure 11. 

 Greedy AVF FindFPOF FDOD 

k No. 
Found 

% of 
Total 
Outliers 

No. 
Found 

% of 
Total 
Outliers 

No. 
Found 

% of 
Total 
Outliers 

No. 
Found 

% of 
Total 
Outliers 

10 4 15.38 3 11.54 3 11.54 1 3.85 

20 7 26.92 7 26.92 7 26.92 7 26.92 

30 8 30.77 10 38.46 9 34.62 9 34.62 

40 12 46.15 11 42.31 10 38.46 10 38.46 

50 13 50.00 12 46.15 12 46.15 13 50.00 

60 20 76.92 16 61.54 17 65.38 18 69.23 

70 21 80.77 21 80.77 21 80.77 21 80.77 

80 24 92.31 24 92.31 24 92.31 24 92.31 
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Figure 11 Input Target Outliers, k, vs. Actual Outliers Found for the Post-operative 

Patients Dataset 

All algorithms have comparable results. 

For this dataset, the ineptitude of the algorithms in detecting the outliers in this 

dataset is made evident in the rapid increase in the Probability of False Alarm. Table 14 

shows the probabilities. 

Probability of False Alarm Probability of Miss 

k Greedy AVF FindFPOF FDOD Greedy AVF FindFPOF FDOD 

10 9.4 10.9 10.9 14.1 84.6 88.5 88.5 96.2 

20 20.3 20.3 20.3 20.3 73.1 73.1 73.1 73.1 

30 34.4 31.3 32.8 32.8 69.2 61.5 65.4 65.4 

40 43.8 45.3 46.9 46.9 53.8 57.7 61.5 61.5 

50 57.8 59.4 59.4 57.8 50.0 53.8 53.8 50.0 

60 62.5 68.8 67.2 65.6 23.1 38.5 34.6 30.8 

70 76.6 76.6 76.6 76.6 19.2 19.2 19.2 19.2 

80 87.5 87.5 87.5 87.5 7.7 7.7 7.7 7.7 

Table 14 Post-operative Patient Probability of False Alarm and Probability of Miss 

The Probability of Miss decreases slowly since the dataset is not imbalanced enough. 

The Probability of False Alarm also increases too rapidly, which is not ideal. 
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4.3.4 Page Blocks 

The algorithms do not fair well at detecting all the outliers for the page blocks 

dataset, like the post-operative patients dataset. Table 15 shows that the Greedy algorithm 

detects the outliers at the quickest rate followed by the AVF algorithm. 

Table 15 Results (Outliers Detected) for All Outlier Detection Algorithms using the 

Page Blocks Dataset 

Greedy and AVF have comparable results in number of outliers found. FindFPOF 

and FDOD detect outliers at half the rate of Greedy and AVF. 

Even though the AVF algorithm has the second quickest rate, Figure 12 shows the 

large difference between the total outliers detected by the Greedy and AVF algorithms. 

 Greedy AVF FindFPOF FDOD 

k No. 
Found 

% of 
Total 
Outliers 

No. 
Found 

% of 
Total 
Outliers 

No. 
Found 

% of 
Total 
Outliers 

No. 
Found 

% of Total 
Outliers 

100 45 16.07 40 14.29 19 6.79 19 6.79 

200 81 28.93 84 30.00 42 15.00 42 15.00 

300 130 46.43 120 42.86 63 22.50 63 22.50 

400 157 56.07 168 60.00 74 26.43 74 26.43 

500 177 63.21 189 67.50 80 28.57 80 28.57 

600 183 65.36 201 71.79 94 33.57 94 33.57 

700 213 76.07 206 73.57 96 34.29 96 34.29 

800 237 84.64 214 76.43 110 39.29 110 39.29 

900 242 86.43 223 79.64 116 41.43 116 41.43 

1000 242 86.43 233 83.21 121 43.21 121 43.21 
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Figure 12 Input Target Outliers, k, vs. Actual Outliers Found for the Page Blocks 

Datset 

The Greedy and AVF algorithms converge close to each other and have better 

accuracy than the FindFPOF and FDOD algorithms. FindFPOF has identical 

results as FDOD and is covered by the graph of FDOD. 

For the Greedy and AVF algorithms, the Probability of False Alarm does not 

grow as rapidly as that for the post-operative patients dataset. The FindFPOF and FDOD 

algorithms do not converge on the outliers as quickly as the Greedy and AVF algorithms. 
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Probability of False Alarm Probability of Miss 

k Greedy AVF FindFPOF FDOD Greedy AVF FindFPOF FDOD 

100 1.1 1.2 1.6 1.6 83.9 85.7 93.2 93.2 

200 2.4 2.4 3.2 3.2 71.1 70.0 85.0 85.0 

300 3.5 3.7 4.8 4.8 53.6 57.1 77.5 77.5 

400 4.9 4.7 6.6 6.6 43.9 40.0 73.6 73.6 

500 6.6 6.3 8.5 8.5 36.8 32.5 71.4 71.4 

600 8.5 8.1 10.3 10.3 34.6 28.2 66.4 66.4 

700 9.9 10.1 12.3 12.3 23.9 26.4 65.7 65.7 

800 11.5 11.9 14.0 14.0 15.4 23.6 60.7 60.7 

900 13.4 13.8 16.0 16.0 13.6 20.4 58.6 58.6 

1000 15.4 15.6 17.9 17.9 13.6 16.8 56.8 56.8 

Table 16 Page Block Probability of False Alarm and Probability of Miss 

The Probability of Miss decreases quickly for the Greedy and AVF algorithm, while 

the Probability of False Alarm does not increase that quickly. For the FindFPOF and 

FDOD algorithms, the Probability of Miss does not decrease rapidly. 

4.3.5 Simulated 

The first generated dataset, as stated previously, has 10 attributes, 10 distinct 

attribute values per attribute and ranges from 1,000 to 800,000 points. For these 

simulations, the input k is kept constant at 30.  Table 17 shows the timing results for each 

k input. 
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Data Size Greedy AVF FindFPOF FDOD 

1,000 0.27 0.00 0.81 4.58 

10,000 2.72 0.03 8.13 44.72 

30,000 8.53 0.06 24.02 134.30 

50,000 14.31 0.09 40.19 222.88 

100,000 26.42 0.19 81.06 445.39 

200,000 52.75 0.39 165.08 891.28 

300,000 79.39 0.58 241.61 1337.06 

400,000 106.14 0.80 323.97 1781.78 

500,000 131.75 0.94 404.45 2233.74 

600,000 158.70 1.16 484.00 2678.73 

700,000 184.94 1.33 564.80 3127.22 

800,000 212.08 1.56 667.55 3568.55 

Table 17 Scalability of Varying Data Size (Time Measured in Seconds) 

Notice how quickly the Greedy, FindFPOF, and FDOD algorithms are increasing in 

comparison to the others. 

The outcome shows that the Greedy, FindFPOF and FDOD algorithms do not scale 

gracefully. The timing for all of the algorithms increases; however, the AVF algorithm 

grows slowly since it only has to do one pass over the dataset. The scalability of Greedy 

is heavily dependent on the size of the dataset. The FindFPOF and FDOD algorithms also 

slow down in execution time because of the Apriori algorithm. Figure 13 shows a better 

representation of the scaling. 
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Figure 13 Graph of Varying Data Dimension (thousands) vs. Time (milliseconds) 

In the figure above, all algorithms increase in a linear fashion. FDOD increases the 

quickest, while AVF increases at the slowest rate. 

The second dataset contains 100,000 points, 10 distinct attribute values per 

attribute, and the number of attributes is varied from 2 to 30. The input k is kept constant 

at 30. 

Number of Attributes Greedy AVF FindFPOF FDOD 

2 5.81 0.06 1.08 1.88 

5 13.61 0.11 2.83 5.45 

10 27.02 0.19 5.36 13.17 

20 53.06 0.38 10.31 34.44 

30 80.17 0.59 15.83 67.50 

Table 18 Varying Number of Attributes (Time Measured in Seconds) 

The results in Table 18 show that Greedy and FDOD increase more quickly by a large 

factor compared to AVF and FindFPOF. The AVF algorithm remains under 1 second in 

execution time, while the FindFPOF algorithms grow slowly in execution time. Figure 
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14, below, shows a plot of the aforementioned results. All algorithms scale linearly, 

except for FDOD. FDOD grows exponentially, as was noted in the algorithms 

description. The Greedy and FDOD algorithms increase the fastest in execution time, 

whereas AVF grows the slowest. The number of attributes affects the Greedy algorithm 

because at each iteration it must compute the entropy for each attribute. We attribute the 

increase in run time for the FindFPOF and FDOD algorithms to the execution of the 

Apriori algorithm, which mines for frequent patterns. Once again, the AVF algorithm 

only performs one pass over the dataset, which is why the execution time only increases 

slightly as the number of attributes increases.  

 

Figure 14 Number of Attributes vs. Time (milliseconds) 

In this figure, the Greedy algorithm has the largest linear slope and FDOD 

algorithm increases exponentially. The AVF algorithm has smallest slope. 
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The third generated dataset has 100,000 points, 10 attributes, and the number of 

distinct attribute values per attribute varies from 5 to 40. Again, the input k is kept 

constant at 30. Table 19 shows the results of varying the number of attribute values per 

attribute. 

Number of Attribute Values Greedy AVF FindFPOF FDOD 

5 26.41 0.20 164.67 625.38 

10 26.31 0.24 5.30 13.17 

20 26.26 0.20 2.33 1.52 

30 26.02 0.19 2.33 1.53 

40 26.17 0.22 2.31 1.52 

Table 19 Varying Number of Attribute Values per Attribute (Time Measured in 

Seconds) 

For all algorithms the execution remains relatively constant, however the FDOD 

algorithm decreases quickly in execution time. 

The plot of the results for various numbers of attribute values per attribute is shown in 

Figure 15. The Greedy and AVF algorithms have a relatively constant execution time. 

Interestingly, the FindFPOF and FDOD algorithms decrease in execution time, which 

seems to follow an inverse relationship. We attribute this to the fact that the number of 

attribute values per attribute, V, increases, while the number of attributes, m, and the size 

of the data, n, does not. As the number of attribute values per attribute, V, increases fewer 

and fewer attribute values occur frequently. This results in fewer frequent itemsets. The 

number of attribute values does not affect the Greedy or AVF because it is too small to 

affect the hashing of the frequencies and the subsequent calculations. 
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Figure 15 Number of Attribute Values vs. Time (seconds) 

The Greedy and AVF algorithms have a slope close to zero; however, the FindFPOF 

and FDOD algorithms decrease in execution exhibiting an inverse relationship. 

 The fourth and final dataset contains 100,000 points, 10 attributes, and 10 

attribute values. The k input value is varied from 1 to 1,000. The results are presented in 

Table 20. 
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k-input Greedy AVF FindFPOF FDOD 

1 0.97 0.19 81.39 445.74 

10 9.02 0.17 80.83 446.25 

30 26.39 0.19 81.31 445.56 

50 43.81 0.20 80.86 446.36 

100 87.59 0.22 80.89 447.55 

200 175.14 0.28 81.53 445.91 

300 262.34 0.31 81.03 445.84 

400 349.63 0.38 80.80 445.30 

500 436.84 0.42 80.56 445.81 

600 526.63 0.47 80.83 446.14 

700 611.02 0.52 83.47 445.88 

800 697.86 0.58 82.39 446.16 

900 784.92 0.63 81.53 448.74 

1000 871.44 0.67 81.09 446.48 

Table 20 Varying k-input (Time Measured in Seconds) 

The AVF, FindFPOF, and FDOD algorithms are all relatively constant in 

execution time; however, the AVF algorithm performs the best with a constant time close 

to zero. The Greedy algorithm performs the worst, increasing in execution time as the k 

value increases. Figure 16 shows that Greedy has a steep slope compared to the other 

algorithms. The Greedy algorithm increases drastically in execution time as the input-k 

value grows because it must conduct k passes over the dataset to find k outliers. However, 

the AVF, FindFPOF, and FDOD algorithms simply find the top-k outliers in one pass 

over the dataset. 
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Figure 16 Input-k (thousands) vs. Time (milliseconds) 

The Greedy algorithm has a sharp slope in contrast to the near zero slope of the 

other algorithms. 

4.4 Discussion 

As seen in results from the previous sections with real and artificially generated 

datasets, AVF approximates very well the outlier detection capabilities of the Greedy 

algorithm, while it performs very well for larger values of the size of the dataset (n) 

dataset dimensionality (m) and the target number of outliers (k). The Greedy algorithm 

becomes exceedingly slow for large values of n. This is because the entropy calculations 

become increasingly more expensive as n increases. FindFPOF and FDOD also become 

slower for larger datasets, which is because they need to search through all the possible 

subsets of each data point. 
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In addition, the Greedy algorithm slows down considerably for large values of k 

as well as for larger dimensionalities, m. In contrast, the AVF, FindFPOF and FDOD 

algorithms do not depend on k, so their performance remains constant for each different k 

value. However, higher dimensionalities, m, do slow down the FindFPOF and Greedy 

algorithms, because they result in the production of more frequent itemsets. The authors 

in [7, 8] discuss entering a MAXLEVEL parameter, in order to put an upper bound to the 

length of the possible itemsets created. For example if the user specifies a maximum 

itemset length of five, the itemsets created cannot contain more than five items. However, 

the MAXLEVEL usage in [8] negatively influences the accuracy of outlier detection in 

their algorithms. 

The FindFPOF and FDOD algorithms depend on the minimum support threshold 

minsup entered by the user.  The accuracy of FindFPOF and FDOD can be improved if 

different values for minsup are used. We ran several different tests for pageblocks 

varying the value of minsup. For example, for k = 200 and minsup = 0.04, FDOD 

detected 120 outliers (in contrast to the 42 in Table 15); however, for minsup = 0.03, 

FDOD detects 51 outliers. This is because a lower minsup value makes more subsets 

frequent, while a higher minsup value makes more subsets infrequent. This is an example 

of how challenging it can be to select the appropriate minimum support threshold 

specifically for each dataset and application. 

AVF has the advantage that it does not create itemsets and assumes only a single 

pass over the entire dataset. Therefore, its complexity is only dependent on the size, n, 

and the dimensionality of the dataset, m.  In addition, AVF eliminates the need to make 
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difficult choices for any user-given parameters such as minimum support or maximum 

itemset length. 

Revisiting the example discussed in Section 3.4 shows that an additional outlier, 

customer 3, exists.  This is because point 3 contains the infrequent itemset {Young, 

Sedan}. All other instances of the attribute value “Young” are combined with “Sports”. 

Every algorithm, except for AVF, succeeds at detecting customer 3 as the next most 

likely outlier. Based on this knowledge we intend to experiment with techniques to 

increase the outlier detection accuracy of AVF without significantly deteriorating its 

performance. 
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CHAPTER 5 Conclusions and Future Plans 

Outlier detection is a research area that has received much attention. However, 

most of the research has focused on numerical datasets, and not specifically on the 

detection of outliers in categorical data. In addition, the research that has focused on 

categorical data have not been contrasted to each other. We have focused on four outlier 

detection algorithms for categorical data, including one algorithm that we developed (our 

own innovation). The algorithms developed by other researchers include Greedy [6], 

FindFPOF [7], and FDOD [8]. The algorithm that we introduced, called AVF, has shown 

to be an effective (accurate) and efficient (scalable) technique, which lends itself to the 

nature of data today, as AVF’s performance does not deteriorate with large datasets or for 

datasets with high dimensionalities. 

Our experiments demonstrated that AVF is as effective (accurate) in detecting 

outliers, as existing and representative outlier detection strategies, reported earlier in the 

literature. Furthermore, our experiments have demonstrated that AVF is more efficient 

(faster), and quite often a lot more efficient than these representative existing outlier 

detection strategies. One of the limitations of AVF, mentioned at the end of the previous 

section, that was evident in the example presented in Section 3.4 and in the page blocks 

results when comparing Greedy and AVF, is the tradeoff of accuracy when detecting 

outlier one pass, which is much faster than the current algorithms. How to overcome this 

tradeoff is the topic of some of our future work. We also plan to modify and extend the 

ideas presented in this thesis to apply to a distributed setting. 
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Appendix A 

Build Instructions 
 

1. Run Matlab 

2. Entropy and Attribute-Value Frequency (AVF) Algorithms 

• From folder: Outlier Detection 

• mex -g outlierdetection.cpp 

• mex outlierdetection.cpp 

3. Frequent Itemset Mining Based Algorithms 

• From folder: Frequent Itemset Outlier Detection\Matlab 

o mex -g ../Code/OutlierDetection/OutlierDetectionAlgorithms.cpp 

../Code/Apriori/Myth/MythAprioriDataProvider.cpp 

../Code/Apriori/Apriori.cpp ../Code/Apriori/AprioriTrie.cpp 

../Code/Apriori/IAprioriDataProvider.cpp ../Code/Apriori/Trie.cpp 

o mex ../Code/OutlierDetection/outlierdetectionalgorithms.cpp 

../Code/Apriori/Myth/MythAprioriDataProvider.cpp 

../Code/Apriori/Apriori.cpp ../Code/Apriori/AprioriTrie.cpp 

../Code/Apriori/IAprioriDataProvider.cpp ../Code/Apriori/Trie.cpp 

Execution Instructions 
 

Entropy and Attribute-Value Frequency (AVF) Algorithms 
 

[outliers, time]  =  outlierdetection(data, k, algorithm) 

 

Inputs: 

• data – n (number of points) x m (number of attributes) dataset 

• k – target number of outliers to be detected 

• algorithm – which algorithm to run (1: LSA, 2: Greedy, and 3: AVF) 

 

Outputs: 

• outliers – labels for outliers and non-outliers (1 for outliers and 0 for non-outliers) 

• time – execution time in milliseconds 

 

Frequent Itemset Mining Based Algorithms 

 

[flags, time(i)] = OutlierDetectionAlgorithms(data, minSup, k, algorithm); 

 

Inputs: 

• data – n (number of points) x m (number of attributes) dataset 
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• minSup – minimum support (frequency) threshold for frequent itemset mining 

• k – target number of outliers to be detected 

• algorithm – which algorithm to run (1: LSA, 2: Greedy, and 3: AVF) 

 

Outputs: 

• outliers – labels for outliers and non-outliers (1 for outliers and 0 for non-outliers) 

• time – execution time in milliseconds 
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Appendix B 

OutlierDetectionAlgorithms Class Reference 
Contains all Frequent Itemset Mining based algorithms. 

 

We use the MythAprioriDataProvider to access each data point (transaction) in the dataset. It also 

stores a vector of the frequent itemsets. The function we use to acquire each transaction is: 

MythAprioriDataProvider::readLine(set<ItemType> &transaction. 

It returns the itemset in a standard template set. 

 

 #include <OutlierDetectionAlgorithms.h> 

Public Member Functions 

• OutlierDetectionAlgorithms () 

Constructor.   

 

• ~OutlierDetectionAlgorithms () 

Destructor.  

 

• double RemoveOutliers (MythAprioriDataProvider *mADP, double minSupp, int targetK, int 

option) 

Detects outliers in dataset using the algorithm chosen (option).  

 

• bool FindFPOF (MythAprioriDataProvider *mADP, double minSup, int targetK) 

Runs He's technique using Frequent Pattern Outlier Factor (FPOF).  

 

• bool OteyAlternateApproach (MythAprioriDataProvider *mADP, double minSup, int targetK) 

Runs faster version of Otey's technique using his outlier score. Algorithm called Fast 

Distributed Outlier Detection (FDOD).  

 

• int * GetFlags () 

Returns points to flags array.  

 

• void PrintFlags () 

Displays tagged outliers to screen.  

 

 

• void PrintOutlierness () 

Displays outlier score for each point to screen.  
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Protected Member Functions 

• double CalculateOteyOutlierFactor (MythAprioriDataProvider *mADP, set< ItemType > 

*transaction, vector< ItemSet > *frequentItemSets, vector< int > combinationCount) 

Calculate outlier factor using Otey's function.  

 

• void RemoveFrequentItemsets (MythAprioriDataProvider *mADP, set< ItemType > *transaction, 

vector< ItemSet > *frequentItemSets, vector< int > *combinationCount) 

Remove frequent itemsets from vector counting infrequent itemsets.  

 

• int CalculateCombinations (int n, int k) 

Calculates the number of combinations; the number of ways of picking k unordered outcomes 

from n possibilities.  

 

• double Factorial (int num) 

Calculates the factorial of a number.  

 

Detailed Description 

Contains all Frequent Itemset Mining based algorithms.  

 

Implements several outlier detection using matlab matrices implemented using templates 

provided through MYTH.h. The user can input n data vectors with m dimensions which 

translates to n rows and m columns. An outlier detection algorithm can be ran to extract outliers 

which are stored in a matrix. Two algorithms are implementations based on Frequent Itemset 

Mining.  

 

Definition at line 101 of file OutlierDetectionAlgorithms.h. 

Member Function Documentation 

double OutlierDetectionAlgorithms::RemoveOutliers 

(MythAprioriDataProvider * data, double minSupp, int targetK, int 

option) 

Detects outliers in dataset using the algorithm chosen (option).  

Parameters: 

data Data provider for myth matrix.  

minSupp Minimum support (threshold) value for frequent itemset mining.  

targetK Target number of outliers to be detected.  

option Value of algorithm wishes to execute.  

Returns: 

Returns true if algorithm successfully executed.  

 

Definition at line 156 of file OutlierDetectionAlgorithms.cpp. 

References FindFPOF(), and OteyAlternateApproach(). 
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bool OutlierDetectionAlgorithms::FindFPOF 

(MythAprioriDataProvider * mADP, double minSup, int targetK) 

Runs He's technique using Frequent Pattern Outlier Factor (FPOF).  

 

The outlierness score is calculated based on if the point contains a frequent itemset. 

Therefore, the more frequent itemsets the point contains, the higher the score. Outliers are 

those with the lowest score. 

Parameters: 

mADP A data provider that extracts the points from a dataset.  

minSup The minimum support used to mine frequent itemsets.  

targetK Target number of outliers  

Returns: 

Returns true if algorithm is successfully executed.  

 

Definition at line 201 of file OutlierDetectionAlgorithms.cpp. 

References Apriori::Apriori_Algorithm(), MythAprioriDataProvider::DecodeValue(), 

MythAprioriDataProvider::GetDataMatrix(), MythAprioriDataProvider::GetItemSetVector(), 

MythAprioriDataProvider::ReadLine(), and MythAprioriDataProvider::Reset(). 

Referenced by RemoveOutliers(). 

bool OutlierDetectionAlgorithms::OteyAlternateApproach 

(MythAprioriDataProvider * mADP, double minSup, int targetK) 

Runs faster version of Otey's technique using his outlier score. Algorithm called Fast 

Distributed Outlier Detection (FDOD).  

 

The outlierness score is calculated based on if the point does not contain a frequent itemset. 

Therefore, the less frequent itemsets the point contains, the higher the score. Outliers are 

those with the highest score. The alternate approach to the Otey algorithm was created in 

response to the slowness of the original. This uses the combination function (nCk)to 

determine the number of combinations there are for each transaction and removing the ones 

that are frequent. 

Parameters: 

mADP A data provider that extracts the points from a dataset.  

minSup The minimum support used to mine frequent itemsets.  

targetK Target number of outliers to be detected.  

Returns: 

Returns true if algorithm is successfully executed.  

 

Definition at line 377 of file OutlierDetectionAlgorithms.cpp. 

References Apriori::Apriori_Algorithm(), CalculateCombinations(), CalculateOteyOutlierFactor(), 

MythAprioriDataProvider::DecodeValue(), MythAprioriDataProvider::GetDataMatrix(), 

MythAprioriDataProvider::GetItemSetVector(), MythAprioriDataProvider::ReadLine(), and 

MythAprioriDataProvider::Reset(). 

Referenced by RemoveOutliers(). 
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int * OutlierDetectionAlgorithms::GetFlags () 

Returns points to flags array.  

Returns: 

Return pointer to flags array.  

 

Definition at line 681 of file OutlierDetectionAlgorithms.cpp.double 

OutlierDetectionAlgorithms::CalculateOteyOutlierFactor 

(MythAprioriDataProvider * mADP, set< ItemType > * transaction, 

vector< ItemSet > * frequentItemSets, vector< int > combinationCount) 
[protected] 

Calculate outlier factor using Otey's function.  

Parameters: 

mADP A data provider that extracts the points from a dataset.  

transaction Transaction/itemset under consideration.  

frequentItemSets Frequent itemsets of the whole datasets.  

combinationCount The combinations for the different number of literals.  

Returns: 

Returns the outlier score.  

 

Definition at line 532 of file OutlierDetectionAlgorithms.cpp. 

References RemoveFrequentItemsets(). 

Referenced by OteyAlternateApproach(). 

void OutlierDetectionAlgorithms::RemoveFrequentItemsets 

(MythAprioriDataProvider * mADP, set< ItemType > * transaction, 

vector< ItemSet > * frequentItemSets, vector< int > * combinationCount) 
[protected] 

Remove frequent itemsets from vector counting infrequent itemsets.  

Parameters: 

mADP A data provider that extracts the points from a dataset.  

transaction Transaction/itemset under consideration.  

frequentItemSets Frequent itemsets of the whole datasets.  

combinationCount The combinations for the different number of literals.  

Returns: 

void  

 

Definition at line 566 of file OutlierDetectionAlgorithms.cpp. 

References MythAprioriDataProvider::DecodeValue(). 

Referenced by CalculateOteyOutlierFactor(). 
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int OutlierDetectionAlgorithms::CalculateCombinations (int n, int k) 
[protected] 

Calculates the number of combinations; the number of ways of picking k unordered outcomes 

from n possibilities.  

Parameters: 

n The number of possibilities.  

k The number of unordered outcomes.  

Returns: 

The number of ways of picking k unordered outcomes from n possibilities.  

 

Definition at line 644 of file OutlierDetectionAlgorithms.cpp. 

References Factorial(). 

Referenced by OteyAlternateApproach(). 

double OutlierDetectionAlgorithms::Factorial (int num) 
[protected] 

Calculates the factorial of a number.  

Parameters: 

num The number to be "factorialized."  

Returns: 

Return the factorial of num.  

 

Definition at line 662 of file OutlierDetectionAlgorithms.cpp. 

Referenced by CalculateCombinations(). 

Generated using Doxygen. 

The documentation for this class was generated from the following files: 

• M:/Documents/Research/Outlier Research/Code/Frequent Itemset Outlier 

Detection/Code/OutlierDetection/OutlierDetectionAlgorithms.h 

• M:/Documents/Research/Outlier Research/Code/Frequent Itemset Outlier 

Detection/Code/OutlierDetection/OutlierDetectionAlgorithms.cpp 
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Appendix C 

OutlierDetection Class Reference 
Performs outlier detection techniques using data matrix provided by user. The user can choose the 

algorithm and the outliers and non-outliers will be outputted to their respective matrix.  

 

 #include <outlierdetection.h> 

Public Member Functions 

• OutlierDetection () 

Constructor.  

 

• OutlierDetection (const MIOList<> &IOList) 

Overloaded Constructor.  

 

• OutlierDetection (const InputMatrix &data) 

Overloaded Constructor.  

 

• ~OutlierDetection () 

Used in the creation of the object.  

 

• bool create (const MIOList<> &IOList) 

Returns true if object created.  

 

• bool create (InputMatrix &data) 

Function that calculates entropy.  

 

• double entropy (int frequency, unsigned int qty) 

Chooses correct algorith depending option.  

 

• double removeOutliers (int targetK, int option) 

Implements Local Search Algorithm described by He.  

 

• bool localSearchAlgorithm (int targetK) 

This function calculates locates a number of outliers using LSA equivalent number of outliers 

to that chosen by user. The located outliers are stored as '1' in matrix of flags.  

 

• bool altLSA (int targetK) 

Implements Greedy Algorithm described by He.  

 

• bool greedyAlgorithm (int targetK) 
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Implements New Algorithm.  

 

• bool frequencyAlgorithm (int targetK) 

Accessor functions.  

 

• InputMatrix & getData () 

Returns matrix of all data.  

 

• void setData (const MIOList<> &IOList) 

Returns true if object created.  

 

• void setData (InputMatrix &data) 

Returns true if object created.  

 

• unsigned int getM () 

Returns number of columns (attributes).  

 

• unsigned int getN () 

Returns number of rows (vectors/points).  

 

• int * getFlags () 

Returns pointer to flags array storing true for outlier and false for non-outlier.  

 

• double getTotalEntropy () 

Returns total entropy of current set of outliers and non-outliers or whole data depending if an 

outlier detection algorithm has been run.  

 

Detailed Description 

Performs outlier detection techniques using data matrix provided by user. The user can choose the 

algorithm and the outliers and non-outliers will be outputted to their respective matrix.  

 

Definition at line 100 of file outlierdetection.h. 

Member Function Documentation 

bool OutlierDetection::create (const MIOList<> & IOList) 

Returns true if object created.  

Parameters: 

IOList Input/output list from matlab.  

 

Definition at line 165 of file outlierdetection.cpp. 

References setData(). 

Referenced by OutlierDetection(). 
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double OutlierDetection::entropy (int frequency, unsigned int qty) 

Chooses correct algorith depending option.  

Parameters: 

frequency Frequency of a value.  

qty Total number of values.  

Returns: 

Returns value of calculated entropy.  

 

Definition at line 309 of file outlierdetection.cpp. 

Referenced by greedyAlgorithm(), and localSearchAlgorithm().double 

OutlierDetection::removeOutliers (int targetK, int option) 

Implements Local Search Algorithm described by He.  

Parameters: 

targetK Target number of outliers to be detected.  

option Value of algorithm wishes to execute.  

Returns: 

Returns true if algorithm successfully executed.  

 

Definition at line 331 of file outlierdetection.cpp. 

References frequencyAlgorithm(), greedyAlgorithm(), and localSearchAlgorithm(). 

bool OutlierDetection::localSearchAlgorithm (int targetK) 

This function calculates locates a number of outliers using LSA equivalent number of outliers 

to that chosen by user. The located outliers are stored as '1' in matrix of flags.  

Parameters: 

targetK Target number of outliers to be detected.  

Returns: 

Returns true if algorithm correctly executed.  

 

Definition at line 375 of file outlierdetection.cpp. 

References entropy(). 

Referenced by removeOutliers(). 

bool OutlierDetection::greedyAlgorithm (int targetK) 

Implements New Algorithm.  

Parameters: 

targetK Target number of outliers to be detected.  

Returns: 

Returns true if algorithm correctly executed.  
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Definition at line 565 of file outlierdetection.cpp. 

References entropy(). 

Referenced by removeOutliers(). 

void OutlierDetection::setData (const MIOList<> & IOList) 

Returns true if object created.  

Parameters: 

IOList Input/output list from matlab.  

 

Definition at line 203 of file outlierdetection.cpp. 

References MIOList< t_uNumInputs, t_uDesiredNumOutputs >::Input(), and MRefMatrix< TYPE, 

Complexity >::PointTo(). 

Referenced by create(). 

void OutlierDetection::setData (InputMatrix & data) 

Returns true if object created.  

Parameters: 

IOList Input/output list from matlab.  

 

Definition at line 235 of file outlierdetection.cpp. 

References MRefMatrix< TYPE, Complexity >::PointTo(). 

 

Generated using Doxygen. 

The documentation for this class was generated from the following files: 
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