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With millions of users and billions of photos, web-scale face recognition is a challenging task that
demands speed, accuracy, and scalability. Most current approaches do not address and do not scale well
to Internet-sized scenarios such as tagging friends or finding celebrities. Focusing on web-scale face iden-
tification, we gather an 800,000 face dataset from the Facebook social network that models real-world
situations where specific faces must be recognized and unknown identities rejected. We propose a novel
Linearly Approximated Sparse Representation-based Classification (LASRC) algorithm that uses linear
regression to perform sample selection for ‘1-minimization, thus harnessing the speed of least-squares
and the robustness of sparse solutions such as SRC. Our efficient LASRC algorithm achieves comparable
performance to SRC with a 100–250 times speedup and exhibits similar recall to SVMs with much faster
training. Extensive tests demonstrate our proposed approach is competitive on pair-matching verification
tasks and outperforms current state-of-the-art algorithms on open-universe identification in uncon-
trolled, web-scale scenarios.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Face recognition is a well-researched field with a history that
can be viewed as a journey of increasing scope, realism, and appli-
cability to real-world facial analysis problems. Perhaps this journey
is described best by the many datasets introduced over the years
that addressed key challenges at the time of collection. Early data-
sets such as AT&T (ORL) [1], AR [2], Yale [3], FERET [4], and PIE [5]
were collected in the laboratory to control and explore solutions
for illumination, expression, age, pose, and disguise. In such tightly
controlled environments, machine learning can match or surpass
humans [6] and performance is often very good at the risk of over-
fitting to overly structured situations. As face recognition grew be-
yond the confines of laboratory settings, evaluations such as FRVT
[7], FRGC [8], and MBE [9] applied face recognition to real problems
like mugshot and passport scanning, high resolution imagery, 3D
facial scans, and outdoor scenarios. Lately, face recognition re-
search has shifted towards realistic faces captured in more uncon-
trolled conditions. In particular, consumer and Internet face
recognition tasks have increased in popularity with ‘‘in-the-wild’’
datasets such as LFW [10], PubFig [11], and various private
Facebook galleries [12–14]. This has spurred the development of
more robust algorithms, although humans still outperform the best
approaches [11].

With the increasing pervasiveness of digital cameras, the Inter-
net, and social networking, there is a growing need to catalog and
analyze large collections of photos. Because photo interest is lar-
gely determined by who appears in the picture, labeling photos
with identities is particularly important. In fact, popular social net-
works such as Facebook allow users to place tags on photos to label
people, encouraging collaboratively shared photo albums. Imagine
millions of Internet users tagging their photos: such web-scale
labeling problems present a real challenge and fascinating oppor-
tunity for automation by face recognition.

In such consumer-driven and Internet applications, there are
many unique challenges in applying face recognition: the mas-
sive-scale nature of dozens or hundreds of faces each for hundreds
or thousands of people, the uncontrolled nature of illumination,
age, pose, expression, a high variance in image quality, and noisy
data due to human mislabeling. Although there are several large-
scale evaluations like FRVT [7], FRGC [8], and MBE [9] and verifica-
tion datasets such as GBU [15] and LFW [10], open-universe face
identification remains a little-studied problem in the research
community at large, especially with respect to large-scale web
and consumer related photo tagging tasks. For instance, in a social
network context, only friends should be tagged while ignoring all
others (Fig. 1(b)); however, in a local newspaper publication con-
text, a public figure is more noteworthy (Fig. 1(a)). Thus as Fig. 1
depicts, depending on the context, real-world face recognition
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Fig. 1. In open-universe face identification, ignoring distractors is vital. In a news article scenario (a), only public figures are relevant. If the photo is uploaded to Facebook (b),
the user only tags friends. All other faces are distractors. Photo credit to Neon Tommy.
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must identify specific people reliably while rejecting all others as
distractors.

To address these insufficiencies when scaling face identification
to web-scale applications in the real-world, we construct a very
large dataset from Facebook, propose a novel and efficient algo-
rithm named Linearly Approximated Sparse Representation-based
Classification (LASRC), and perform extensive performance evalua-
tions. Inspired by robust sparse methods [16,17] that scale poorly
as the number of training images increases (often taking seconds
or even minutes using the fastest algorithms on a gallery of
100,000 faces), we investigate how to reduce the high computation
times of ‘1-minimization techniques used to recover coefficient
vectors relating a test face to those in a dictionary. Starting with
least-squares solutions, we find the interesting result that impos-
ing brute-force sparsity by thresholding low-magnitude coeffi-
cients can markedly improve accuracy in large-scale datasets. We
establish the key insight that there exists a correlation between
the high-magnitude components of ‘2 solutions and coefficients
chosen by sparse ‘1-minimization. Our method LASRC exploits
the speed of ‘2 to quickly initialize a sparse solution and serve as
an approximation to ‘1-minimization, which accurately refines
the solution. Furthermore, we show LASRC classifies 100–250
times faster than SRC with similar performance, is comparable to
SVMs with almost no training required, and outperforms realtime,
state-of-the-art algorithms in web-scale face recognition. We pres-
ent five contributions:

1. The exploration of large-scale face identification, focusing on
realistic open-universe scenarios (Section 2.2).

2. The release of feature descriptors for a new Facebook dataset
and a Facebook downloader tool for analysis of large face
datasets (Section 3).

3. The development of a novel algorithm, LASRC, for realtime,
accurate, and web-scale face identification (Section 4).

4. The evaluation of local features, sparsity, and locality with
large-scale datasets in an open-universe scenario (Sections
5 and 6).

5. The comparison of LASRC to many state-of-the-art algo-
rithms with real-world datasets (Sections 7 and 8).

Finally, Section 9 concludes with a discussion and future work.
2. Background

Face recognition is a broad and diverse field [18]. To motivate
our paper, we begin by describing a taxonomy of face recognition
Please cite this article in press as: E.G. Ortiz, B.C. Becker, Face recognition for we
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tasks, emphasizing the importance of open-universe face identifi-
cation and describing related work. We summarize a relevant sub-
set of face recognition algorithms. Finally, we also review popular
controlled and web-gathered datasets with respect to their
strengths and weaknesses in the task of facilitating the develop-
ment of web-scale face recognition.
2.1. Taxonomy of face recognition

As summarized in Fig. 2, face recognition tasks can be catego-
rized as: closed-universe face identification, open-universe face
verification, or open-universe face identification.

� Closed-Universe Face Identification: Given a set of labeled
training faces, what is the identity of a new face? This task
is closed-universe because no new faces will be unknown;
thus, results are reported as accuracy or error rates. This is
the most common form of face recognition with controlled
datasets such as Extended Yale B, AR, MultiPIE, or FERET
[17,19–25,12–14,26–31].

� Open-Universe Face Verification: Given a pair of faces are
they the ‘‘same’’ or ‘‘not same’’? In other words, is an input
face’s claimed identity correct? Because people can claim
any identity, the verification task is open-universe. Just as
popular datasets like LFW [10], GBU [15], BANCA [32],
XM2VTS [33], and PubFig [11], the task is referred to as
pair-matching. Face verification performance is reported
with a ROC curve [25,11,26].

� Open-Universe Face Identification: Given a labeled training
gallery, (1) what is the probability that a new test face is
known and (2) what is the most probable identity? Since
new face identities are not restricted, the task is referred to
as open-universe. Despite being the most realistic face recog-
nition scenario, it is one of the least-studied. Results are
reported using ROC or PR curves [16].

2.2. Open-universe face identification

Real-world tasks such as identifying famous people or labeling
friends fall under open-universe face identification, the most real-
istic application domain for face recognition on the web, where the
system must determine if the query face exists in the known gal-
lery, and, if so, the most probable identity. As Fig. 1 shows, the abil-
ity to reject distractors in an open-universe way is critical to the
success of face recognition in realistic scenarios. Thus, it is uncer-
tain how the excellent results reported under closed-universe
b-scale datasets, Comput. Vis. Image Understand. (2013), http://dx.doi.org/

http://dx.doi.org/10.1016/j.cviu.2013.09.004
http://dx.doi.org/10.1016/j.cviu.2013.09.004


Fig. 2. Three common face recognition tasks.
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assumptions [14,17,20,23,25,34] perform in open-universe scenar-
ios. Likewise, verification tasks are popular and have progressed
significantly [10,11,35], although verification algorithms have
rarely been evaluated in identification tasks. Grother and Phillips
[36] provide good insights by exploring the relationship between
verification and identification tasks, however they use several sim-
plifying assumptions that may not not be very applicable to web-
scale face recognition: identity predictions are independent per
individual and the distribution of predictions can be approximated
via Monte-Carlo sampling. Thus it is unclear how and to what
effectiveness verification algorithms can be efficiently adapted to
web-scale face identification; in fact, a recent National Institute
of Standards and Technology (NIST) report on face recognition
[9] asserts identification-specific algorithms can offer more accu-
rate predictions and better scalability to large populations than
performing many verifications.

Historically, NIST has run a series of face recognition evalua-
tions since the 1990s, including explorations of open-universe
face identification. Phillips et al. [4] first evaluate the controlled
FERET [4] dataset on open-universe identification with a greater
than 90% correct identification of known individuals with little
variance as the false accept rate of unknown individuals in-
creased. Subsequently, the Face Recognition Vendor Test (FRVT)
2002 [7] evaluated the open-universe, watch-list task on a mix-
ture of visa images and a quasi-controlled collection, where the
gallery of known individuals is very small out of a large popula-
tion of individuals. Finally, the Multi-Biometric Evaluation
(MBE) 2010 [9] expands previous evaluations to a much larger
scale evaluating both open-universe verification and identifica-
tion. Although the image data is from mugshots, passports, dri-
ver’s licenses, a much different image source than most
consumer and web faces, the results provide valuable insights,
confirming FRVT 2002 results that the identification rate de-
creases as the population size increases.

Li and Weschler in [37] examine open-set face recognition using
Transduction Confidence Machines (TCM) with nearest neighbor
on two small datasets (450 and 750 images) with controlled, fron-
tal face images. Both [38,39] use a multi-verification system for
open-set identification, where a verifier or 1-vs-all SVM classifier
is trained for each identity. Given the responses from each verifier,
a test face is labeled unknown if all verifiers give a negative re-
sponse and the most likely candidate is given a positive response.
Our use of SVMs is similar, however we employ a looser rejection
criterion where we reject based on a threshold. Most recently,
Please cite this article in press as: E.G. Ortiz, B.C. Becker, Face recognition for we
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Scheirer et al. [40] explored the open-universe scenario in the
object recognition community. They modify SVM margins by intro-
ducing two metrics: (1) generalization to separate the planes to
handle data beyond the training data and (2) specialization to
bring planes closer where an open-set risk measures the trade-
off; however they test on small datasets so scalability to the large
scale problems we are addressing is uncertain.
2.3. Algorithmic related work

Since the scope of face recognition research is vast, we cover
some recent advances in face identification shown hierarchically
in Fig. 3, focusing on least-squares and sparse representations as
these methods have demonstrated remarkable success in con-
trolled datasets (other notable methods such as those based on
attributes and similes [11] or V1-inspired features [14] do not fit
into the subset in Fig. 3 and are not considered).

When considering face identification algorithms suitable for
large-scale deployment on a social network or other realtime sys-
tem with user interaction, several real-world requirements be-
come evident. (1) Algorithms must scale with low training times
because any training taking over a few minutes will feel unrespon-
sive to end users, who expect new, added photos and identities to
be rapidly processed. (2) Fast classification rates of at least a few
Hz are necessary for realtime performance, otherwise users will
be able to label faces faster than the system. (3) Identification per-
formance must be high while reliably rejecting unknown identities
otherwise users may feel the system is too unreliable. Many exist-
ing, popular face recognition, research algorithms suffer in one or
more of these areas when applied to web-scale scenarios. We eval-
uate the subsequent related work with these requirements in
mind.

Support Vector Machines: SVMs have fast classification and
are very popular in recognition tasks [25,41,42]. Wolf et al. [25]
showed good performance on a small subset of LFW with multi-
feature SVMs. However, training one-vs-all SVMs with hundreds
of classes and tens of thousands of examples takes hours, even
with large-scale algorithms such as LIBLINEAR [43] with the dense
data patch for speed [41]. Furthermore, limiting the training exam-
ples or tuning convergence parameters reduces classification rates
too low to be competitive. Lin et al. [42] introduced an Averaged
Stochastic Gradient Descent (ASGD) method to train huge SVMs
rapidly, but it requires more than 30 min for our large datasets
and yields accuracy well below LIBLINEAR. Thus, many current
b-scale datasets, Comput. Vis. Image Understand. (2013), http://dx.doi.org/
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Fig. 3. A hierarchy of face identification algorithms discussed in this paper, grouped by broad categories. Slow performing algorithms such as SRC or SVMs do not scale well,
but can employ fast approximations to make an initial guess that can be refined. Highlighted in gray, we propose a novel linear regression approximation for SRC, named
LASRC.
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SVM approaches train too slowly to be well-suited for dynamic,
large-scale face recognition on the Internet where new photos
are constantly uploaded and users expect rapid training of new
faces and identities for improved recognition.

Sparse Representation Classification (SRC): In the pioneering
work, Sparse Representation-based Classification (SRC), Wright
et al. [16] presented the principle that a given test image can be
represented by a linear combination of images from a large dictio-
nary of faces. The key concept was that the test image can be rep-
resented by a small subset of the large dictionary; therefore, the
corresponding coefficient vector is sparse, or has only a few non-
zero elements obtained with ‘1-minimization. Their experiments
showed SRC performed well on standard datasets with simple pix-
el representations and is robust to varying degrees of pixel corrup-
tion, block occlusion, and certain disguises. However, SRC required
perfectly aligned faces and classification was slow, needing sec-
onds per face.

A large breadth of research in the area of ‘1-minimization exists.
Early work cast the problem as a linear program [44] and later ac-
counted for small noise with a second-order cone program (SOCP)
[45]. Interestingly, both methods are initialized by the ‘2 solution.
Several faster algorithms have been developed: Gradient Projec-
tion for Sparse Representation (GPSR) [46], Homotopy [47], and
Augmented Lagrange Multiplier (ALM) [48], amongst others. GPSR
finds the solution by following the gradient direction via quadratic
programming, Homotopy updates its active set of candidate non-
zero coefficients based on a decision criterion from the ‘2 solution,
and ALM casts the ‘1 problem as a Lagrange multiplier method in
which infeasible points are given a high cost and thus ignored.
Other methods focus on greedy approximations like Orthogonal
Matching Pursuit (OMP) [49], which selects one new basis, or coef-
ficient, at each iteration and approximates the sparse solution fas-
ter than full ‘1-minimization, although the correct solution is not
guaranteed.

Improving SRC: Wagner et al. [17] furthered the SRC method by
simultaneously aligning and classifying a test image with respect
to a pre-aligned training gallery, thus handling pose variations in
test images. Unfortunately, it is hard to find a well-aligned training
set in real-world scenarios. To rectify this, Peng et al. in [50] com-
bined low-rank and ‘1-minimization to perform batch alignment of
images. However, this low-rank optimization takes a long time
with large datasets even with recent optimizations for video [51].
Patel et al. [52] rectifies lighting and pose via estimation and learns
a person specific dictionary via K-SVD an approximation technique
used in OMP. They outperform standard SRC under varying illumi-
nation, pose, and occlusions. We assume fast funneling [53] or eye-
based alignment adequately addresses the variations in pose.

Yang and Zhang [20] found that holistic features like PCA and
LDA used in [16] cannot handle variations in illumination, expres-
sion, pose, and local deformations. Moreover, the occlusion matrix
introduced in [16] makes the ‘1-minimization problem computa-
tionally prohibitive. They introduced a Gabor wavelet feature as
well as a Gabor occlusion dictionary into SRC and showed their
Please cite this article in press as: E.G. Ortiz, B.C. Becker, Face recognition for we
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method, GSRC, performs better on standard datasets with large
degrees of pose and occlusion variations. Also noting the useful-
ness of features, Chan and Kittler [30] used the Local Binary Pattern
(LBP) [54] histogram descriptor, finding local features provided
more robustness to misalignments than SRC on raw pixels. Like-
wise, Yuan and Yan [34] introduced a multi-task joint sparse rep-
resentation named MTJSRC that fuses multiple local features.

Speeding up SRC: While the convex, ‘1-minimization problem
can be easily solved by linear programming and other classical
methods, the complexity remains too high for large, high-dimen-
sional dictionaries [20]. Observing that the ‘1-optimization proce-
dure of SRC is very slow, researchers have focused on speeding-
up the process while maintaining robustness. Shi et al. [22] com-
bined an explicit hashing function to reduce data dimensionality
while preserving important structure information for ‘1-minimiza-
tion via OMP. Differently, Nan and Jian [29] and Li et al. [28] used a
fast K nearest neighbor method (KNN) to select training samples
local to the test image for input to the ‘1-solver. They showed this
KNN-SRC method performs well with a considerable speedup.
Likewise, new correlation-based screening pre-processing rules
such as the SAFE rule [55] or the Sphere Test 3 [56] have been pro-
posed to safely and rapidly eliminate training samples before ‘1-
minimization for increased speed.

Least-Squares Solutions: Instead of optimizing or approximat-
ing ‘1-minimization, other researchers loosened sparsity con-
straints by imposing an ‘2-norm rather than an ‘1-norm.
Bypassing ‘1-optimization completely, very fast least-squares ap-
proaches can be used in coefficient vector recovery. In [27], Na-
seem et al. proposed a nearest-subspace least-squares method
named LRC that can be extended with block-based recognition to
handle occlusion. Similarly, Shi et al. [23] questioned whether face
recognition is really a compressive sensing problem and demon-
strated least-squares is comparable to SRC on controlled datasets.
Zhang et al. [24] presented a regularized ‘2-minimization
(CRC_RLS) that placed an additional constraint on the coefficient
vector, adding robustness to occlusion. Furthermore, Wang et al.
[19] asserted that locality is more important than sparsity and dis-
covers a coefficient vector from a weighted least-squares solution,
or Locally-constrained Linear Coding (LLC), performed on an
image’s K nearest neighbors. Moreover, Xu et al. [57] propounded
that there is a tradeoff between sparsity and stability in linear solu-
tions. Although studies have cast doubt on the advantages of spar-
sity for recognition, we show that pure ‘2-based methods struggle
when presented with open-universe, real-world data from Labeled
Faces in the Wild (LFW) [10], PubFig [11], and Facebook [12–14].

In summary, we have presented that SRC methods for face rec-
ognition perform well with high robustness with the drawbacks
that they are (1) sensitive to pose variations and (2) slow to recover
coefficient vectors. Least-squares methods address the speed issue
by removing the ‘1 constraint on the coefficient vector, however
exhibit increased sensitivity to variations in the data as we show
later in Section 8.3. Although ‘1 methods are slow, they exhibit
robustness in discovering the correct identity of test faces. Our
b-scale datasets, Comput. Vis. Image Understand. (2013), http://dx.doi.org/
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method combines the speed of least-squares to discover a subset of
the initial dictionary to feed into ‘1-minimization to discover the
final identity of a given test face. In our experimentation, we ad-
dress pose sensitivity through the use of three popular features
(LBP, HOG, and Gabor). Furthermore, we demonstrate least-
squares works well for ‘1-approximation. Our combination of local
features with ‘2 and subsequent ‘1-minimization provides the
speed and robustness necessary to deal with real-world data.

2.4. Existing face datasets

Traditionally, face recognition operates on faces captured in
artificial environments where conditions are carefully controlled
or labeled (AR [2], Yale [3], and FERET [4]). More recently, web-
gathered LFW [10] and PubFig [11] datasets have gained popularity
with face verification tasks with an increased focus on large-scale
evaluations such as GBU [15] and MBE [9]. We summarize existing
datasets in Table 1.

2.4.1. Controlled datasets
Faces in highly controlled datasets such as Ext. Yale B [3] and

the AR Face Database [2] are very popular choices for face recogni-
tion evaluation. The Ext. Yale B [3] dataset contains 38 subjects un-
der 64 lighting conditions (Fig. 4(a)). The AR Face Database [2]
contain 50 male and 50 female subjects with images taken two
weeks apart for each (Fig. 4(b)). The FERET dataset [4] (Fig. 4(c)) ex-
plores variations in pose, expression, and even time. Although test-
ing on such datasets provides a good baseline for proof-of-concept,
excellent results do not necessarily ensure success on uncon-
trolled, real-world scenarios. Private datasets such as those used
in FRVT [7], FRGC [8], and MBE [9] are less controlled and much lar-
ger and realistic, being pulled from law enforcement and visa
sources.

2.4.2. Verification datasets
Two datasets designed for face verification have become popu-

lar: the Good, the Bad, and the Ugly (GBU) [15] and Labeled Faces
in the Wild (LFW) [10]. Unlike identification tasks that explicitly
determine the identity of a face, in verification tasks, pairs of
images are compared for similarity to determine if the identity of
the two people are the same or not. GBU has 6.5k photos of 437
identities divided into three partitions: easy (good), hard (bad),
Table 1
A brief summary of a subset of popular and Internet-based face recognition datasets, listin
the images (captured in a lab, taken from law enforcement visas/mugshots, or the Interne
specific setting or in the wild), for what task most papers use the dataset (closed universe
many faces per known identity there are, the number of known identities in the dataset,

Dataset name Public Source Controlled Main

DOS/Natural [9] No Visas Yes Open
DOS/HCINT [9] No Visas Yes Verifi
LEO [9] No Mugshots Yes Open
SANDIA [9] No Lab Yes Verifi
FERET [4] Yes Lab Yes Close
ATT (ORL) [1] Yes Lab Yes Close
Ext. Yale B [3] Yes Lab Yes Close
AR [2] Yes Lab Yes Close
GBU [15] Yes Lab Semi� Verifi
LFW [10] Yes Web No Verifi
MultiPIE [31] Yes Lab Yes Close
PubFig [11] Yes Web No Verifi
Facebook [12] No Web No Close
Facebook [13] No Web No Close
Facebook [14] No Web No Close
PubFig + LFW (Ours) Yes Web No Open
Facebook (Ours) Semi⁄ Web No Open

⁄ Raw images not available for privacy reasons, but feature descriptors are available.
� Some photos are taken outdoors in natural lighting.
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and very difficult (ugly) faces to match. The division of faces into
three partitions is particularly useful to evaluate algorithmic per-
formance at different difficulty levels. The LFW dataset has 13.2k
faces of over five thousand celebrities and public figures, and has
inspired an interest in face recognition applied to real-world, ‘‘in-
the-wild’’ photos.
2.4.3. Web-gathered datasets
Seeking more realistic faces, two new datasets gathered from

Internet images using keyword searches of famous people have
been introduced: the 13.2k image Labeled Faces in the Wild
(LFW) [10] dataset (Fig. 4)) and the 58.8k image Public Figures
(PubFig) [11] dataset (Fig. 4(e)). Researchers have also used social
network faces [12–14], but these datasets have not been released.
The predominant use of LFW and PubFig is face verification
[10,11,35], although small subsets have been used for closed-uni-
verse face identification [25,14]. To adapt these datasets for testing
open-universe face identification tasks, we first aligned all faces
with the LFW standard, funneling method of Huang et al. [53].
We created five datasets from the 200 identities of PubFig with a
random 75%/25% train/test split. To incorporate the open-universe
aspect, all aligned LFW faces were added as distractors (except 138
overlapping identities). This mimics a web-scale face recognition
scenario of finding specific celebrities while ignoring all other
faces.
3. Facebook dataset

Our interest is in large-scale, realistic face identification scenar-
ios for personal photo collections where diversity is naturally-cap-
tured. Several works have explored face identification with photos
from Facebook [12–14], but only in the closed-universe scenario.
None have addressed the more important open-universe scenario
where the algorithm will encounter many background faces that
should be rejected as non-friends (Fig. 1). Focusing on the scenario
of automatically tagging friends in open-universe social networks,
we created a new 800,000 face dataset (Fig. 4(f)) collected from
tagged Facebook photos. Feature descriptors for this new dataset
and our downloader tool for Facebook photos, tags, face detection,
matching, and alignment are available at http://www.enriquegor-
tiz.com/fbfaces.
g whether or not they are publicly available for download, the photographic source of
t), whether or not the images were controlled (i.e. if the subjects were captured in a
identification, face verification, or open universe identification), approximately how

the number of total faces, and the number of unknown identities.

task Faces/ID Known IDs # Faces Unknown IDs

ID 1 520k 625k 50k
cation 3 37.4k 121k 30k
ID 1 1.6M 2.4M 200k
cation 50 263 13.9k –
d ID 12 1.2k 14k –
d ID 10 40 400 –
d ID 576 28 16.1k –
d ID 30 126 4k –
cation 15 437 6.5k –
cation 3 5.7k 13.2k –
d ID 2k 337 750k –
cation 300 200 58.8k –
d ID 25 15.8k 439k –
d ID 65 946 61.7k –
d ID 100 100 10k –
ID 175 200 58k 11k
ID 112 6.1k 803k 110k

b-scale datasets, Comput. Vis. Image Understand. (2013), http://dx.doi.org/
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Fig. 4. Example from controlled datasets (a–c) and web-gathered datasets (d–f). (a) Ext. Yale B [3] concentrates on illumination, (b) AR [2] on disguises, and (c) FERET [4] on
pose. (d) LFW [10] focuses on pair matching between famous faces and (f) PubFig [11] between celebrity photos. (f) Our challenging, realistic Facebook dataset is naturally
diverse in pose, illumination, occlusion, and age. Publishing consent was obtained.
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3.1. Dataset construction

Using our provided tools, researchers can build very similar, yet
customizable datasets from Facebook.

Face Collection: We collected 24.6 million photos with a total
29.2 million tags, representing 2.9 million unique people from a to-
tal of 83,000 Facebook users. The high-performance SHORE face
detection system [58,59] was used to detect 48.3 million frontal
faces with a rotation range of approximately ±35� at a rate of
20 Hz. From 3000 ground-truth face and tag matches, we modeled
the probability that a tag represents a nearby face based on dis-
tance and orientation. Using a false alarm rate (FAR) of 1%, 17.4
million face matches were extracted and aligned by a similarity
transform based on SHORE-reported eye positions.

Including Distractors: For many photos, distractor (unknown)
faces exist in the background. For each test face, we collected
tagged, non-friend faces also in the photo and labeled them as dis-
tractors. As listed in Table 2, there are similar numbers of test and
distractor faces. Thus, our dataset exactly models the real-life sce-
nario and allows evaluation of the face identification algorithms’
ability to reject unknown faces under the open-universe scenario.
Table 2
Facebook (FB) and PubFig + LFW (PF) datasets detailing the training identities per
dataset and the number of dataset repetitions. Reported training, test, and distractor
faces per dataset are averaged.

Name Ids Reps Train Test Distractor

FB256 256 8 22.0k 7.2k 4.5k
FB512 512 4 42.4k 13.9k 9.0k
FB1024 1024 2 88.6k 29.0k 18.8k
PF + LFW 200 5 35.5k 11.6k 11.7k

Please cite this article in press as: E.G. Ortiz, B.C. Becker, Face recognition for we
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Dataset Statistics: To best mimic real-world usage, we ran-
domly placed Facebook users into groups of 256, 512, and 1024
identities to simulate users with varying numbers of friends. For
thorough evaluation, we sample multiple repetitions of each group
with no overlap amongst any identities or photos. Only users with
at least 20 photos were kept as they are more likely to be tagged
and represent more than 75% of the collected faces. We collected
all the photos a user had been tagged in and used the oldest 75%
faces as training and the remaining most recent 25% photos as test-
ing, which most closely models the real-world.
3.2. Evaluation criterion

The standard metrics for open-universe face identification are
ROC curves based on the detect and identify rate, which reports
the number of knowns correctly classified at a given threshold,
and the false accept rate, which shows the number of unknowns
falsely labeled at a given threshold [4]. In addition, we propose
using precision, which encodes the ratio of correct identifications
to the number of returned identifications, and recall, which is a ra-
tio of coverage over the known test data [60]. Intuitively, where the
ROC curves tell us the tradeoff between correctly labeling data of
interest vs. labeling the data of disinterest, the PR curves, as de-
fined, tell us at a given threshold how much data of interest do
we label and how well we do on that data. From a social-network-
ing standpoint, it is advantageous to provide the user fewer labels
with high precision; therefore, we feel that recall at 95% precision
better reflects real-world performance as this corresponds to the
percentage of detected faces of interest that can be labeled with
only one mistake in 20 predictions. Finally, since fast classification
and training are necessary in such dynamic, real-world situations,
we report train and test times.
b-scale datasets, Comput. Vis. Image Understand. (2013), http://dx.doi.org/
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3.3. Dataset bias

Torralba and Efros [61] emphasized the importance of minimiz-
ing the selection, capture, and negative set biases of new datasets.
Unlike LFW and PubFig images, our Facebook dataset does not suffer
from a keyword-based selection bias as we automatically extracted
faces from crowd-annotated personal photos. However, selection is
biased towards younger people given social network demographics.
In contrast to the professional photographer bias of LFW and PubFig,
Facebook’s capture bias is predominantly skewed towards everyday,
consumer quality photos. Traditionally, classification is handled as a
binary problem where you must label a positive class of interest
amidst a negative class consisting of a very large range of classes it
is not, where coverage of all classes is very difficult. The negative
set bias in our scenario is minimized due to the large sampling range
offered by data collection via Facebook. More importantly, the Face-
book dataset has a large negative set in the form of a realistic set of
distractors from non-friend background faces.

4. Linearly approximated SRC

Our problem is the classic face recognition scenario where we
want to classify a test image y 2 Rm given a database of C known
subjects (classes). Assume the nj faces of subject j 2 [1, . . . , C] are
stacked into a matrix Aj ¼ ½a1; . . . ;anj

� as column vectors, therefore
matrix A is composed of all of the faces for all subjects
A ¼ ½A1; . . . ;AC � 2 Rm�n, where m is the length of the feature vector
and n = n1 + � � � + nj is the total number of images. Assuming that
test image y can be represented as a linear combination of images
of itself within the training set, we can represent the problem as
y = Ax, where x is a coefficient vector encoding the relationship of
y to the columns of A.

4.1. Least-squares solution

A typical solution is to use the traditional method for error min-
imization, least-squares, to find an estimate of x, which casts the
minimization as:

x̂‘2 ¼ arg min
x

ky � Axk2
2; ð1Þ

and is computed by the psuedoinverse as follows:

x̂‘2 ¼ ðA
T AÞ

�1
AT y: ð2Þ

The ‘2 solution is convenient as it is very fast to evaluate and the
pseudoinverse can be precomputed with Singular Value Decompo-
sition (SVD) and cached. In the case of an underdetermined system,
we can use the least-norm solution, which is also calculated with
SVD. Wright et al. [16] stated that x̂2 is dense, as seen in the ‘2 coef-
ficients in Fig. 9(a), and therefore is not very informative. However,
recent studies [23,24] show that ‘2 works well for common datasets
even though the measurements are noisy.

4.2. Sparse representation-based classification

Compressive sensing has been shown to outperform least-
squares using only a subset of available data [16]. Given test image
y and training set A, we know that the images of the same class to
which y should match is a small subset of A. Therefore, the coefficient
vector x should only have non-zero entries for those few images from
the same class and zeros for the rest. Imposing this sparsity con-
straint upon the coefficient vector x with small dense error � to han-
dle noise/occlusion results in the following formulation:

x̂‘1 ¼min
x;�
kxk1 þ k�k2 s:t: y ¼ Axþ �; ð3Þ
Please cite this article in press as: E.G. Ortiz, B.C. Becker, Face recognition for we
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where the ‘1-norm enforces a sparse solution by minimizing the
absolute sum of the coefficients. The result of the sparsity constraint
is seen in the ‘1 coefficients in Fig. 9(a), where the largest non-zero
values are concentrated on the matching training images corre-
sponding to the correct class.

Wright et al. [16] identifies the test image y by determining the
class of training samples that best reconstructs the face from the
recovered coefficients:

IðyÞ ¼ min
j

rjðyÞ ¼min ky � Ajxjk2; ð4Þ

where the label I(y) of the test image y is the minimal residual or
reconstruction error rj(y) and xj is the recovered coefficients from
the global solution x̂‘1 that belong to class j. Confidence in the deter-
mined identity is obtained using the Sparsity Concentration Index
(SCI) proposed by [16]. SCI is a measure of how distributed the
residuals are across classes:

SCI ¼ C �maxjkxjk1=kx̂‘1k1 � 1
C � 1

2 ½0;1�: ð5Þ

SCI ranges from zero (the test face is represented equally by all clas-
ses) to one (the test face is fully represented by one class). Wright
et al. [16] show that SCI is a better metric than the minimum resid-
ual for rejecting distractor faces, which is particularly important in
open-universe, real-world environments.

4.3. Approximating SRC

A large drawback to SRC is the computational complexity re-
quired by ‘1-minimization, which requires several seconds per im-
age [16,17] even on datasets with only a few hundred or thousand
training samples. Compared to least-squares which takes less than
100 ms for the largest Facebook datasets, the fastest ‘1-solver,
Homotopy [47], takes at least 5 s while more accurate solvers take
over a minute. Therefore, we developed a way to approximate ‘1-
minimization.

The objective function v(x) of the Lagrangian formulation of the
‘1-minimization (3) specified as a sequence of vector operations is
as follows:

vðxÞ ¼ ky �
Xn

i¼1

aixik2 þ k
Xn

i¼1

jxij; ð6Þ

in which we denote ai 2 Rm as the ith column of A, xi as the ith ele-
ment of coefficient vector x, and k as the sparsity controlling param-
eter. Assuming K sparsity where at most K values are non-zero, for
any i for which xi = 0 in (6), then kaixik2 = 0, jxij = 0, and ai do not
contribute to v(x). Based on this observation, we rewrite the objec-
tive function as:

vðaÞ ¼ ky �
XK

i¼1

xiaik2 þ k
XK

i¼1

j ai j; ð7Þ

where xi represents a column from a matrix X containing only col-
umns contributing to the error and a its corresponding coefficient
values. Since the error estimation is not dependent on the zero en-
tries of x, v(x) = v(a). With the new dictionary X and coefficient vec-
tor a, we can reformulate the ‘1-minimization as:

â ¼ arg minky �Xak2 þ kkak1: ð8Þ

The new objective function v(a) is analytically identical to v(x), yet
much faster to evaluate for K� n. Since the ‘1 solution produced by
the GPSR ‘1-solver [46] with s = 0.01 is 97.6% sparse, significant
speed-ups are possible. However, ‘1-minimization is an iterative
optimization with a finite step-size so some difference in solution
is expected. We measure the difference to be 4% on randomly gen-
erated data, but only 1.6% using 10,000 images from Facebook.
b-scale datasets, Comput. Vis. Image Understand. (2013), http://dx.doi.org/
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This formulation depends on knowing which coefficients of x
will be non-zero in order to form X, or equivalently, which training
samples will be included in the sparse minimization. Finding the
exact contributing samples is no easier than ‘1-minimization, but
we claim it is easier to approximate. As discussed in Section 4.1,
‘2-minimization is very fast, convenient, and has proven to be ade-
quate for standard face recognition datasets. Furthermore, it is evi-
dent in Fig. 9(a) that although the ‘2 solution is dense, the highest
peaks are similar to the ‘1 solution and correspond to the training
images that match the identity of the test image. Moreover, as pre-
viously noted the ‘2 solution is used to initialize several ‘1 solvers.
We conclude that despite ‘2 being noisier, it has a similar shape to
‘1 and is likely to serve as a good approximation. In Section 6.2.1,
we show that high-magnitude coefficients of least-squares have a
high probability of corresponding to non-zero coefficients in ‘1

solutions. This correlation is largely related to the fact that both
obtain global solutions on similar error functions with different
norm constraints.

Algorithm 1. Linearly Approximated SRC (LASRC)
1. Input: Training gallery A 2 Rm�n, test face y 2 Rm�1, and
sparsity controlling parameter k.
2. Normalize the columns of A to have unit ‘2-norm
3. Compute linear regression using the pre-calculated

pseudoinverse x̂‘2 ¼ ðA
T AÞ

�1
AT y

4. Select K samples from A corresponding to the largest
coefficients in j x̂‘2 j, yielding subset X
5. Solve the ‘1-minimation problem with approximated
subset dictionary X 2 Rm�K

â ¼ arg minky �Xak2 þ kkak1

6. Compute residual errors for each class j 2 [1,C]

rjðyÞ ¼ ky �Xjajk2

7. Compute SCI

SCI ¼ C �maxjkajk1=kâk1 � 1
C � 1

7. Output: identity I(y) = arg minj rj(y), confidence
P(I 2 [1,C]jy) = SCI
4.4. Linearly approximated SRC

Our proposed algorithm, Linearly Approximated SRC (LASRC),
uses ‘2 solutions to approximate ‘1-minimization to gain the speed
of least-squares and the robustness of SRC. In Fig. 5, we show our
complete system for face recognition. We focus on the classifica-
tion stage, where we perform linear regression approximation
and SRC. We first rapidly compute the coefficient vector x̂‘2 with
linear regression (2) using the pre-calculated pseudo-inverse (AT-

A)�1AT. Next, we select the top K training samples from A corre-
sponding to the largest magnitude coefficients j x̂‘2 j and create
the approximated matrix X = as. We then use the smaller dictio-
nary X as input to the ‘1-solver to compute a new sparse vector
a shown in (8). The most probable identity is found using the min-
imal residual error rj(y) = ky �Xjaj)k2. Finally, we compute SCI as
in (5) for the probability that the given test image identity exists
Please cite this article in press as: E.G. Ortiz, B.C. Becker, Face recognition for we
10.1016/j.cviu.2013.09.004
in the training database. In the hierarchy shown in Fig. 3, our meth-
od is sparse using a least-squares approximation.
5. Feature representations

Using local features to augment classification is a widely used
technique [25,54,62]. However, due to underlying assumptions of
pixel-wise linearity, least-squares and sparse methods have pri-
marily focused on raw pixels [16,17,23,24]. On the other hand,
Chan and Kittler [30] and Yang and Zhang [20] reported that using
features increased accuracy by 20–40% when misalignments or
pose variations were present. Furthermore, there is evidence that
multi-feature sparse methods can be successful with object recog-
nition [34].

5.1. Feature selection and extraction

Because real-world datasets contain pose variations even after
alignment, we use three fast and popular local features: Gabor
wavelets [62], Local Binary Patterns (LBP) [54], and Histogram of
Oriented Gradients (HOG) [63]. Inclusion of more features aids rec-
ognition slightly, but at much higher computational costs.

Before feature extraction, all images are first normalized by
subtracting the mean, removing the first order brightness gradient,
and performing histogram equalization. Gabor wavelets were ex-
tracted with one scale k = 4 at four orientations
h = {0�,45�,90�,135�} with a tight face crop at a resolution of
25 � 30 pixels. A null Gabor filter includes the raw pixel image
(also 25 � 30) in the descriptor. In agreement with [26], we found
looser crops work better for histogram-based features. The stan-
dard LBPU2

8;2 and HOG descriptors are extracted from 72 � 80 resolu-
tion loosely cropped images with a histogram size of 59 and 32
over 9 � 10 and 8 � 8 pixel patches, respectively. All descriptors
were scaled to unit norm, dimensionality reduced with PCA, and
zero-meaned.

5.2. Performance

For reporting results, we use both controlled datasets (Sec-
tion 2.4.1) and the Facebook datasets (Section 3). Times are from
a 2.3 GHz machine (single-threaded).

5.2.1. Controlled datasets
To better understand feature performance, we present results

on controlled datasets (Section 2.4.1), including both the originally
reported accuracies and our results when running the same algo-
rithms on a 1995 length vector concatenated from Gabor, LBP,
and HOG. For Ext. Yale B, we randomly selected 32 images per sub-
ject for training, leaving 32 for testing. This random selection is re-
peated 10 times. For the AR Face Database, we selected seven
images from Session 1 for training and seven images from Session
2 two weeks later for testing. Using standard experimental proto-
cols and the same database setups as [16,20–22,28,34], our results
are directly comparable to previously reported accuracies. Table 3
clearly illustrates two important conclusions. First, higher-dimen-
sional local features powerfully aid all algorithms. Secondly, since
most algorithms achieve a 99.5% or higher accuracy with features,
we conclude face recognition on small, same day, and moderately
controlled illumination datasets is largely a solved problem. Final-
ly, to explore robustness against pose, 1400 faces from 198 identi-
ties from the FERET dataset [4] with pose variations of
h = {�25�,�15�,0�,15�,25�} were used in the same manner as
[20]. Fig. 6(a) uses the FERET pose dataset (Section 2.4.1) to com-
pare SRC [16] with raw pixels, GSRC [20] with Gabor features,
and LASRC with local features. A single feature aids recognition
b-scale datasets, Comput. Vis. Image Understand. (2013), http://dx.doi.org/
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Fig. 5. System flowchart depicting how LASRC classifies a new test face y given a set of training faces A. After alignment and preprocessing, local features are extracted and
concatenated, linear regression is performed to select representative training samples X, and ‘1-minimization is performed to calculate the most probable identity and
confidence.

Table 3
Accuracy on controlled datasets as reported originally vs. a three feature representation (Gabor, HOG, LBP). Most algorithms achieve >99.5% with features.

Algorithm Extended yale B AR face dataset

Reported acc (%) Feature acc (%) Reported acc (%) Feature acc (%)

NNa 90.7 92.1 89.7 98.7
SVMa [25] 97.7 99.8 95.7 99.6
SVM-KNN [64] – 99.7 – 98.1
SRC [16] 98.1 99.7 94.7 99.9
MTJSRCb,c [34] 99.5 99.7 – 99.7
LLC [19] – 99.7 – 99.9
OMP [22] 96.4 99.6 96.9 100.0
KNN-SRC [29] 88.0 99.7 – 99.9
LRC [27] – 98.7 – 98.9
L2 [23] 98.9 99.8 95.9 99.9
CRC_RLS [24] 97.9 99.8 93.7 100.0
LASRC (Ours) – 99.7 – 99.9

a Reported from [16].
b Accuracy interpolated from graph.
c Not using a raw pixel representation.
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Fig. 6. Performance of LASRC with features. (a) Three features improve accuracy on the FERET pose dataset (Section 2.4.1) by as much as 55%. (b) Accuracy on Facebook
dataset with various features and varying dimensionality.
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by 20%, but multiple features with LASRC boosts accuracy up to
50% compared to raw pixels.

5.2.2. Facebook dataset
Repeating similar experiments with Gabor, LBP, and HOG local

features on our large-scale, real-world Facebook datasets, we
Please cite this article in press as: E.G. Ortiz, B.C. Becker, Face recognition for we
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investigate in Fig. 6(b) the individual contributions of each feature
to LASRC as dimensionality is varied from 96 to 3072. Because lin-
ear approximation is so efficient and a small sample selection K
greatly speeds ‘1-minimization, LASRC classifies in under 150 ms
even on the largest Facebook dataset with 3072 dimensions. Raw
pixels plateau first at 47% with 200 dimensions while features such
b-scale datasets, Comput. Vis. Image Understand. (2013), http://dx.doi.org/
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as LBP, Gabor, and HOG peak at 59% between 400 and 800
dimensions. Finally, a representation of multiple features
combined achieves peak accuracy of 67% at 1536 dimensions
(512 from Gabor, HOG, and LBP each), which is 20% over raw
pixels. We see a significant increase in open-universe performance
with more features, similar to the closed-universe accuracy in
Fig. 6.

5.3. Effect of occlusion in real-life

One of the well known advantages of linear representations
such as SRC is their ability to robustly handle occlusions, noise,
and disguise via the creation of an occlusion dictionary [16,23].
Since occlusions are clearly evident in real-world faces, we resized
Facebook images to 15 � 13 and used a 195 � 195 identity matrix
as an occlusion dictionary. Compared to SRC on raw pixels, SRC
with an occlusion dictionary yields an improvement of 0.5% in
accuracy and 1.1% increase in recall at 95% precision. We conclude
that an occlusion dictionary helps performance, but much less than
features. This is unsurprising as [16,23] used all unoccluded faces
for training and all occluded faces for testing, which is rarely the
case in real-world scenarios. Furthermore, occlusion dictionaries
assume raw pixel representations or linear Gabor filters [20], so a
general solution for histogram features such as LBP and HOG is still
an open research problem. Because features increase accuracy by
15–25% (Fig. 6(b)) while occlusion dictionaries only help by 0.5%,
we choose to focus on multi-feature representations.

5.4. Effect of dataset size in real-life

Although our proposed approach targets very large, web-scale
datasets in environments where users of social media upload and
share many photos, it is worthwhile to investigate performance
on casual users who only infrequently upload photos. To simulate
scenarios where individuals may have only a few photos for train-
ing, we randomly subsampled each user’s photo collection in the
Facebook dataset by 50%, 25%, and 10%. Fig. 7. shows the perfor-
mance in terms of recall at high precision as the dataset size is
varied across a selection of algorithms; notice LASRC remains com-
petitive to existing methods, even in scenarios where some users
have only 3 training faces available.

6. Sparsity and locality analysis

Lately there has been controversy between the relative effec-
tiveness of least-squares [23,24,27,57] vs. sparse [16,17,34]
solutions. Furthermore, some works advocate the use of locality
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Fig. 7. Effect of recall at 95% precision by varying the size of the dataset (mean
number of minimum training faces for all Facebook datasets) across multiple
algorithms.
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[19,29] for approximation. Since LASRC uses ‘2 solutions to
approximate ‘1 sparse solutions, we explore how these algorithms
perform in large-scale, open-universe scenarios with respect to
sparsity and locality.
6.1. Sparsity

By selecting only a small pool of K training samples for ‘1-min-
imization, LASRC yields an extremely sparse solution. Typical spar-
sity for GPSR ‘1-minimization with k = 0.01 is about 97%; whereas
LASRC is 99.7–99.9% sparse with K = 64. However, [23,24] claim
that sparsity is not needed in face recognition, prompting us to
ask important questions:

� What ‘1-solver should LASRC use?
� How do non-sparse, least-squares solutions perform in

realistic, open-universe scenarios?
� Is ‘1-minimization necessary for LASRC?
� How fast are ‘1, ‘2, and LASRC algorithms?

6.1.1. Algorithms for ‘1-minimization
To answer the first question, a variety of ‘1-minimization tech-

niques could be used [65]. Table 4 evaluates popular approaches to
‘1-minimization within LASRC, which seeks a sparse representa-
tion between relatively few samples in a high dimensional space.
All algorithms were run with k = 0.01, tol = 10�6, and all other
parameters set to their defaults. While several algorithms perform
similarly, we selected GPSR [46] as a good compromise.
6.1.2. Least-squares performance
On controlled datasets, [23,24,27] used least-squares to achieve

results comparable to SRC with orders of magnitude speed bene-
fits. However, they operate with completely balanced datasets
with an equal number of training samples per class. Since ‘2 solu-
tions are dense with all training images contributing to the resid-
ual error computation, least-squares methods are more sensitive
to imbalances in image distribution. Realistic datasets such as
LFW, PubFig, and Facebook are naturally unbalanced, so least-
squares approaches yield poor accuracy and even poorer precision
and recall performance (Table 4). Existing works [23,24,27] fail to
address this issue, so we attempted to give least-squares
algorithms a competitive edge by balancing the datasets. As
shown in Table 4, least-squares balanced to a max of 100 ran-
domly-selected training images per identity increases accuracy
by 10% and recall at 95% precision by 12%. However, it still under-
performs LASRC.
Table 4
Evaluation of least-squares and ‘1-solvers with LASRC (K = 64). Results reported on
Facebook datasets with mean accuracy, mean recall at 95% precision, and mean
classification time per test face.

Algorithm Recall (%) Accuracy (%) Time (ms/face)

L2a [23] 22.4 49.3 55.3
L2 (balanced, max 100)a [23] 34.5 59.2 52.7
Thresholded L2 41.9 63.3 21.2

LLCa [19] 46.1 61.5 38.1
KNN-SRCa [29] 48.5 63.3 31.6
LRCa [27] 28.4 57.2 43.4

LASRC (Homotopya [47]) 50.5 65.1 61.1
LASRC (l1magic [66]) 44.6 63.3 29.3
LASRC (L1_LS [67]) 53.4 66.6 79.1
LASRC (GPSR [46]) 54.5 66.5 31.7
LASRC (ALM [48]) 54.4 66.5 35.2

a Confidence calculated from residuals instead of SCI.

b-scale datasets, Comput. Vis. Image Understand. (2013), http://dx.doi.org/

http://dx.doi.org/10.1016/j.cviu.2013.09.004
http://dx.doi.org/10.1016/j.cviu.2013.09.004


E.G. Ortiz, B.C. Becker / Computer Vision and Image Understanding xxx (2013) xxx–xxx 11
6.1.3. Imposing sparsity on ‘2 solutions
Although balancing the dataset for maximum accuracy signifi-

cantly improves performance, it is perplexing that least-squares
seemingly contradicts the findings of [23,24] with 7% less accuracy
and 20% lower recall than LASRC. Are LASRC’s performance benefits
coming from simple sparsity or ‘1-minimization? To investigate,
we propose a hypothetical Thresholded L2 algorithm that imposes
sparsity on ‘2 solutions by thresholding low magnitude coefficients
to zero. Thresholded L2 is identical to LASRC’s approximation step
except it bypasses the second ‘1-minimization step to isolate the
effect of sparsity.

For analysis, we varied sparsity from 0% to 99.9% and the bal-
ancedness of the Facebook dataset from unbalanced (all images
with variable faces per person) to completely balanced (25 training
faces per person). The results graphed in Fig. 8 provide several key
insights. First, simple sparsity does not appreciably increase recall
and in fact decreases accuracy when datasets are completely bal-
anced, which agrees with [23,24]. Second, what is surprising is that
even the crude, brute-force imposition of sparsity by Thresholded
L2 can increase performance of both accuracy and recall signifi-
cantly in the unbalanced cases. The results in Fig. 8 suggest that
least-squares [23,24] with local features are not ideal for naturally
unbalanced, open-universe data such as Facebook as even very
simple sparse methods can better take advantage of extra user
photos available for training to provide superior performance.
Sophisticated ‘1-minimization methods for imposing sparsity can
further increase recall to outperform least-squares by 12–32%
(Table 4).
6.1.4. LASRC vs. Least-squares speed
A puzzling result from Table 4 is that LASRC (GPSR) classifies

faster than least-squares (L2) even though LASRC includes the
same ‘2 step in addition to ‘1-minimization. The reason for this dis-
crepancy is that least-squares calculates residuals (4) for all classes
whereas LASRC only calculates residuals for classes represented by
the K = 64 selected training samples. In fact, the difference between
L2 and Thresholded L2 shows that calculating residuals takes over
half of the classification time. Thus with a fast ‘1-solver, LASRC can
be 2 times faster than least-squares on our largest FB dataset with
1024 identities.
6.2. Locality

Recognizing the value of sparsity, but unable to accept the slow
performance of even the fastest ‘1-solvers [65], Nan and Jian [29]
and Li et al. [28] both proposed locality approximations to SRC.
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Fig. 8. Thresholded L2 performance on Facebook as sparsity and balancedness is varied.
recall at 95% precision for all but the completely balanced case.
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KNN-SRC [29], selects a small subset of nearby training samples
for ‘1-minimization to greatly speed up SRC. LLC [19] replaces
the ‘1-minimization step with a weighted least-squares emphasiz-
ing locality. Similarly to KNN-SRC, SVM-KNN [64] trains a local
SVM to classify each test sample. Refer to Fig. 3 for a hierarchy of
algorithms. The screening rules of [55,56] are based on the correla-
tion of the test sample with the training samples, which has an
equivalence to Euclidean distance when samples are normalized
and thus performs within 0.1% of KNN-SRC (proof omitted for
brevity).

The goal of approximating SRC is to select a small set of training
samples for ‘1-minimization so that classification time is greatly
reduced while maintaining performance similar to SRC. KNN-SRC
[28,29] proposes nearest neighbor approximation based on the
assumption that a Euclidean distance metric will select faces of
the same class as the test face. However, we claim samples in ‘1-
sparse solutions are not necessarily local under this metric; there-
fore it is better to select training samples that would be chosen by
‘1-minimization, which can be approximated with linear regres-
sion (least squares). To evaluate this claim, we examine recovered
coefficients for a typical test image from an FB512 dataset in Fig. 9.
All methods exhibit a peak at the correct class, so Fig. 9(b) shows a
zoomed in view of the correct class. Notice LASRC with linear
regression weighs samples more similarly to SRC (‘1) than KNN-
SRC or ‘2.
6.2.1. KNN vs. Linear regression approximation
For a quantitative evaluation of the best metric of locality to

approximate ‘1-minimization, we created dictionaries of ran-
domly generated synthetic samples with the same parameters
as Yang et al. [65]. For 10,000 test samples (randomly generated
from the dictionary with noise), we calculated the energy or
overlap of samples selected by nearest neghbor and linear regres-
sion with the full sparse solution found by ‘1-minimization as we
varied K. Fig. 10(a) shows that linear regression captures the
energy of the ‘1-minimization solution with much fewer samples
than nearest neighbor. Repeating the same experiment with
10,000 samples from real Facebook data confirms that linear
regression approximates ‘1-minimization better than nearest
neighbor (Fig. 10(b)).
6.2.2. Locality speed optimizations
To ensure fair speed comparisons between locality metrics,

both KNN and linear regression were optimized. Linear regression
was optimized as a single multiplication A+y of the test sample y
with the pre-calculated pseudoinverse A+. Performing KNN na-
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ively is slow, but we optimized it by omitting the square root,
expanding the term k(Ai � y)k2 into kAik2 þ kyk2 � 2kAT

i yk2, vector-
izing the n dot products AT

i y into a single matrix multiplication
ATy, and pre-calculating kAik2. For further speedups, B test sam-
ples denoted as Y = [y1, . . . , yB] can be batch multiplied as A+Y or
2kATYk to take advantage of memory caching. Because many
photos are often uploaded at once as an album, we feel processing
several test samples simultaneously is reasonable. We used a
batch size of B = 16, which yielded a 4–5X speedup for both
algorithms as seen in Fig. 11(a).

6.2.3. Locality performance on Facebook
We evaluated locality approximating methods of SVM-KNN,

KNN-SRC, LLC, and LASRC on Facebook data as K was varied (we
omit OMP because it is too slow). In a closed-universe scenario
reported in Fig. 11(b), LASRC achieves the best accuracy. As
expected, KNN-SRC begins to converge with LASRC as K ap-
proaches the total number of faces n, when both become SRC.
Although accuracy is informative, Fig. 11(c) shows classification
time vs. recall at 95% precision in an open-universe scenario for
a more realistic comparison. We also investigated using SCI vs.
residuals for the probability of a distractor and concluded that
SCI aids LASRC while degrading KNN-SRC’s performance. In all
cases, LASRC performs faster and with higher recall than all other
locality-approximating methods.
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7. Comparison on face verification

Although SRC methods are designed to exploit information from
many different faces of a particular subject and is thus best suited
for identification tasks, we can adapt it to the verification task.
Given a dictionary, ‘1-minimization is performed for both images
in the face pair to recover their respective coefficients similar to
[68]; instead of calculating residuals per class, calculating the
cosine distance between the faces’ coefficient vectors yields a sim-
ilarity metric that is surprisingly powerful. SRC for face verification
requires no class information at all and is thus completely unsu-
pervised. To avoid the intractability of using a large dictionary,
we propose employing LASRC’s dictionary approximation via least
squares regression to select candidate pools of images for ‘1-min-
imization. In this section, we evaluate the applicability of SRC
and LASRC to the task of face verification using two popular face
verification datasets: Labeled Faces in the Wild (LFW) [10] and
the Good, the Bad, and the Ugly (GBU) [15].

7.1. Labeled faces in the wild results

Labeled Faces in the Wild (LFW), previously described as a pop-
ular face verification dataset, challenges algorithms to identify if a
pair of faces captured in uncontrolled conditions represent the
same person. For this task, we must further adapt LASRC, where
b-scale datasets, Comput. Vis. Image Understand. (2013), http://dx.doi.org/
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unlike face identification in which the dictionary subset is formed
from the ‘2 coefficients from a single image, we instead take the
absolute value of the ‘2 coefficients from each image in the pair,
add them together, and select the highest resulting summed coef-
ficients. This method selects faces that are correlated with both
images, resulting in a more representative dictionary on which to
perform ‘1-minimization and calculate a similarity from the cosine
distance of the ‘1 coefficients. We use K = 400 for the dictionary
size and a combination of HOG, LBP, and Gabor features and aver-
age the resulting similarities. When applied to verification, SRC and
LASRC do not at any time use any ground truth information and are
thus completely unsupervised algorithms as they do not require
any class labels for any of the pairs.

Fig. 12 shows the ROC curve for SRC, LASRC, and several other
unsupervised LFW methods. Following [68], we select a small dic-
tionary of randomly chosen faces on which we apply SRC. LASRC
outperforms a number of existing algorithms and boosts SRC per-
formance by selecting a dictionary more correlated than randomly
chosen faces. Table 5 lists existing accuracies with standard error
for state-of-the-art algorithms, showing LASRC increases accuracy
over SRC by �3%. Even though LASRC is designed primarily as a
face identification algorithm that excels at exploiting information
from multiple images of individuals, it does well against many face
verification algorithms on the LFW dataset.
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Fig. 12. ROC curves on Labeled Faces in the Wild (LFW) dataset for unsupervised
algorithms from http://vis-www.cs.umass.edu/lfw/results.html (some algorithms
did not provide ROC curve data, please reference papers cited in Table 5). Note SRC
is our implementation of [68] and the addition of LASRC boosts performance.

Please cite this article in press as: E.G. Ortiz, B.C. Becker, Face recognition for we
10.1016/j.cviu.2013.09.004
7.2. The good, the bad, and the ugly results

The Good, the Bad, and the Ugly dataset, as described in Sec-
tion 2.4.2, evaluates verification methods on three partitions of data
varying from least to greatest difficulty. Since our method is not orig-
inally intended for face identification and the dataset requires about
�38 million comparisons, LASRC requires several algorithmic mod-
ifications. The first is in the selection of the approximated dictionary.
We use the 13k image LFW dataset as a source from which we
approximate a small dictionary with 1000 elements using linear
regression against all other LFW images. The second modification,
as previously described, requires the computation of a coefficient
vector for each image in the GBU dataset followed by a cosine dis-
tance computed between each pair. We found that fusing the simi-
larity scores amongst HOG, LBP, and Gabor features with a
k = 0.001 for the ‘1-minimization resulted in the best results. Given
the final similarity matrices for each data split (good, bad, and ugly),
we compute ROC curves as specified in [15].

As seen in Fig. 13 and Table 6, LASRC performs competitively on
the good partition, but lags largely in the bad and ugly sets. Be-
cause LASRC is completely unsupervised while the leading two
methods use models built from class labels, LASRC is at the top
of unsupervised methods on the good partition with V1-like [74].

7.3. LASRC verification summary

We attribute the degradation of the performance on the bad and
ugly sets of GBU and the flattening of the ROC curve on LFW to the
fact that the linear representation assumption struggles recon-
Table 5
Unsupervised results on Labeled Faces in the Wild (LFW). For SRC-based verification
(second half of table), note that our SRC baseline is very similar to that of [68], and
that our LASRC approach boosts accuracy by �3% over SRC. Despite not being
developed for face verification, LASRC performs reasonably well compared to state-of-
the-art and improves results over SRC verification. Note the HybridSparse algorithm
uses a dissimilarity score that we omit.

Algorithm Accuracy ± SE (%)

SD-MATCHES, 125 � 125 [69] 64.10 ± 0.62
GJD-BC-100, 122 � 225 [69] 68.47 ± 0.65
H-XS-40, 81 � 150 [69] 69.45 ± 0.48
LARK [70] 72.23 ± 0.49
LHS [71] 73.40 ± 0.00
HybridSparse [68] 84.70 ± 0.47
I-LPQ⁄ [72] 86.20 ± 0.46
SRC (Ours) 81.14 ± 0.24
LASRC (Ours) 84.13 ± 0.36
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Table 6
Verification rate at false accept rate of 0.1% for the good, bad, and ugly partitions.
LASRC performs competitively on the good partition, but does poorly on the bad and
ugly partitions.

Method Good (%) Bad (%) Ugly (%) Training set

FRVT Fusion⁄ [15] 98.0 80.0 15.0 Proprietary
CohortLDA⁄ [73] 83.8 48.2 11.4 GBUx8
V1-like [74] 73.0 24.1 5.8 GBUx8
Kernel GDA [75] 69.1 28.5 5.1 GBUx8
LRPCA [15] 64.0 24.0 7.0 GBUx8
EBGM [76] 50.0 8.1 1.9 FERET
LBP [54] 51.4 5.0 1.9 None
LASRC (Ours) 71.3 13.5 1.1 LFW

⁄ Supervised algorithms, which depend on class models built using identities of faces.

Table 7
PubFig + LFW (200 classes). Recall at 95% precision (open-universe), Accuracy (closed-
universe), and classification time per test face (two significant figures only) for
PubFig + LFW. All standard deviations are below 3%. Italicized entries indicate non-
realtime times.

Algorithm Recall (%) Accuracy (%) Time (ms)
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structing the test images as the parameters like pose or blurriness
vary. It is important to note that performance would benefit from
selecting an approximated dictionary between each pair of the
GBU dataset as was done with LFW; however, due to the large
quantity of comparisons necessary and its computational cost,
the only option is a global approximated dictionary. Furthermore,
Fig. 7 shows a marked increase in algorithmic performance as more
faces of the same person become available, leading us to wonder if
comparing only two images at a time is a limiting factor in using
verification in web scenarios. Overall, LASRC performs reasonably
well and competitively for an unsupervised algorithm under easier
verification tasks, but struggles as the data becomes more limited
and challenging. The question is how do these results translate to
the much more difficult task of identification?
Non-realtime
SVM (Liblinear [43]) � [25] 58.5 80.2 1

SRC (Homotopy [47])� [16] 72.2 72.2 1800
SRC (GPSR [46])⁄[16] 73.9 81.8 4300
OMP [49] 63.9 79.3 1500
MTJSRC [34] 44.3 70.1 1300

Realtime
NN 38.2 65.8 16

SVM-KNN [64] 62.5 73.2 31
LLC [19] 66.0 77.8 22
KNN-SRC [29] 67.9 78.8 35
LRC [27] 48.3 70.9 30
L2 [23] 58.0 76.8 21
8. Comparison to state-of-the-art identification

To evaluate the holistic performance of LASRC against current
state-of-the-art algorithms on a large scale, we used realistic Pub-
Fig + LFW (Section 2.4.3) and Facebook (Section 3) datasets. We
differentiate between non-realtime algorithms, which are often
higher performing, but too slow to be useful in real-world scenar-
ios (either during training or classification), and realtime algo-
rithms, which are much faster but often not as accurate. Refer to
Fig. 3 for a hierarchy of tested algorithms.
CRC-RLS [24] 54.9 73.5 23

LASRC (Ours) 72.6 81.3 27

⁄ Tuned for maximum recall with k = 0.05.
� Tuned for speed with k = 0.01, tol = 10�3.
� Tuned for maximum precision and recall without downsampling.
8.1. Non-realtime algorithms

Four algorithms from Table 3 suffer from slow training or classi-
fication times: SVMs, SRC, OMP, and MTJSRC. We omit algorithms
Please cite this article in press as: E.G. Ortiz, B.C. Becker, Face recognition for we
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like GSRC [20] because they cannot use multiple features. For the
baseline SRC algorithm, we test with two ‘1-solvers: Homotopy
[47] and GPSR [46]. We tuned Homotopy for speed with a lower tol-
erance tol = 10�3. We optimized GPSR for B = 16 batched operation
(Section 6.2.2) and tuned for maximum recall with k = 0.05
(k = 0.01 yields higher accuracy, but lower recall with slower classi-
fication times). To validate the applicability of SRC in real-world
situations, we also compare against the popular SVM approach using
the large-scale, one-vs-all LIBLINEAR [43] algorithm optimized with
dense data support for faster training [41] and a slack value of c = 1.
Wolf et al. [25] demonstrated a One-Shot Similarity Score (OSS)
kernel boosts accuracy with few training images; however, we find
a linear SVM works just as well for large datasets. MTJSRC [34], a late
fusion, multi-feature SRC approach, was tuned for two iterations for
best performance. OMP was performed with K = 64 and batch
optimized with B = 16 (same as LASRC, KNN-SRC, and LLC).
8.2. Realtime algorithms

The remaining eight algorithms from Table 3 are more suited to
realtime operation: NN, SVM-KNN [64], LLC [19], KNN-SRC [29],
LRC [27], L2 [23], CRC_RLS [24], and LASRC (Ours). Except for
SVM-KNN, all realtime algorithms classify multiple test samples
at once with a batch parameter of B = 16 (Section 6.2.2). SVM-KNN
uses the LibSVM library [77] to train a probabilistic, one-vs-all SVM
with a pre-computed linear kernel for maximum speed. The local-
ity approximating value K = 64 is used for SVM-KNN, LLC,
KNN-SRC, and LASRC. For better performance with LRC, L2, and
CRC_RLS, we balanced the datasets by random selection to a max-
imum of 100 and 200 training faces per identity for Facebook and
PubFig + LFW, respectively. KNN-SRC and LASRC both use k = 0.01
for the GPSR [46] ‘1-minimization algorithm, although we use
the minimum residual as confidence for KNN-SRC and SCI to reject
distractors for LASRC.
8.3. PubFig + LFW and Facebook performance

Using the real-world datasets from Sections 2.4.3 and 3, we
compare LASRC performance to other algorithms in both closed-
universe and open-universe scenarios.
b-scale datasets, Comput. Vis. Image Understand. (2013), http://dx.doi.org/
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8.3.1. Closed-universe accuracy
As reported in Table 3, almost all algorithms achieved 99.5% or

higher accuracy in small, controlled datasets. Although not our fo-
cus, we repeat a similar closed-universe comparison with large-
scale, realistic datasets. Tables 7 and 8 show mean accuracy for
PubFig (LFW is only used in open-universe scenarios) and Facebook
(with 256, 512, and 1024 friend datasets). It is interesting to note
that accuracies are significantly more varied and much lower,
reaching a maximum of only 67–82%. On Facebook, SVMs achieve
best accuracy with SRC (GPSR) trailing by 2.0–2.4%. On PubFig, SRC
surpasses SVMs by 1.6%, likely because SRC can better exploit the
many more training samples per identity. Among the realtime
algorithms, LASRC takes the lead by 2.0–4.4%. Additionally, LASRC
achieves similar performance to SRC with only a 0.5–1.3% differ-
ence. We conclude that SRC is competitive with SVMs and LASRC
best approximates SRC in closed-universe scenarios.
0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

Pr
ec

is
io

n 
(%

) NN
SVM*
SVM−KNN
SRC(Homotopy)*
SRC(GPSR)*
MTJSRC*
LLC
OMP*
KNN_SRC
LRC
L2
CRC_RLS
LASRC (Ours)

Fig. 14. Precision/Recall and ROC curves for PF + LFW. Of all the realtime algorithms, only
SVMs.

Table 8
Facebook (256, 512, and 1024 classes). Recall at 95% precision (open-universe), Accuracy (c
three sizes of Facebook datasets. Italicized entries indicate non-realtime times. All standa

Facebook (256 classes) Facebook (512 cl

Algorithm Recall (%) Acc. (%) Time (ms) Recall (%) Acc

Non-realtime
SVM (Liblinear [43])� [25] 54.1 73.1 1 50.9 69.5
SRC (Homotopy [47])� [16] 41.4 59.7 1300 36.9 54.3
SRC (GPSR [46])⁄ [16] 59.2 71.1 2400 56.4 67.3
OMP [49] 51.3 68.3 890 49.5 63.1
MTJSRC [34] 30.5 58.9 840 23.9 51.2

Realtime
NN 17.9 51.8 11 14.1 46.4

SVM-KNN [64] 50.5 62.6 31 45.1 56.8
LLC [19] 49.4 66.1 24 45.1 60.9
KNN-SRC [29] 51.7 67.8 55 47.8 62.8
LRC [27] 31.3 60.8 19 27.9 56.6
L2 [23] 41.5 65.3 23 34.0 58.8
CRC-RLS [24] 45.0 63.9 24 36.2 57.4

LASRC (Ours) 57.7 69.8 22 54.3 66.1

⁄ Tuned for maximum recall with k = 0.05.
� Tuned for speed with k = 0.01, tol = 10�3.
� Tuned for maximum precision and recall without downsampling.
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8.3.2. Open-universe precision and recall
Since face recognition algorithms must reject unknown iden-

tities in real-world environments, accuracy in a closed-universe
is a poor metric for performance. We present more representa-
tive results in the form of open-universe PR and ROC curves
and recall at 95% precision as described in Section 3.2 for Pub-
Fig + LFW (Fig. 14 and Table 7) and Facebook (Fig. 15 and Ta-
ble 8) datasets. Overall, SRC exceeds all other non-realtime
algorithms at high precision, besting even non-realtime SVMs
by 5.1–15.4% and demonstrating sparse approaches can perform
very well in real-world situations. Sparsity-enforcing KNN-SRC,
LLC, and LASRC algorithms surpass the dense, least-squares ap-
proaches of LRC, L2, and CRC_RLS by >10%, confirming the use-
fulness of sparsity in open-universe scenarios. LASRC again
surpasses all other realtime algorithms by 4.8–6.5%. LASRC’s
excellent performance is especially evident in Figs. 14 and 15
where it is the only realtime method to achieve a PR and ROC
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LASRC achieves comparable performance to non-realtime methods such as SRC and

losed-universe), and classification time per test face (two significant figures only) for
rd deviations are below 3%.

asses) Facebook (1024 classes) All

. (%) Time (ms) Recall (%) Acc. (%) Time (ms) Max train time (min)

3 50.0 67.4 6 124.7
2600 34.8 50.8 5400 0.0
5400 55.2 65.0 11000 0.0
1600 48.7 59.8 2800 0.0
1800 17.7 44.9 4300 0.5

21 12.7 43.4 44 0.0

42 42.0 52.6 61 0.0
34 43.7 57.6 56 0.0
67 46.0 59.3 90 0.0
38 25.9 54.3 72 0.2
44 27.9 53. 91 1.2
46 30.6 52.5 95 2.0

29 51.6 63.7 44 1.3
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http://dx.doi.org/10.1016/j.cviu.2013.09.004
http://dx.doi.org/10.1016/j.cviu.2013.09.004


0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

False Accept Rate (%)

D
et

ec
t &

 Id
en

tif
y 

R
at

e 
(%

)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

Pr
ec

is
io

n 
(%

) NN
SVM*
SVM−KNN
SRC(Homotopy)*
SRC(GPSR)*
MTJSRC*
LLC
OMP*
KNN_SRC
LRC
L2
CRC_RLS
LASRC (Ours)

Fig. 15. Precision/Recall and ROC curves for PubFig + LFW. Of all the realtime algorithms, only LASRC achieves comparable performance to non-realtime methods such as SRC
and SVMs.

Fig. 16. Timeline of all steps in the entire face recognition system. All times
reported with a single core of a 2.27 GHz machine.
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curves similar to non-realtime algorithms, such as SRC and
SVMs. More precisely, LASRC can classify over half of all seen
faces with 95% precision, a recall rate that exceeds SVMs by
1.6–14.1%. Further, we completely outperform the non-realtime
algorithms of OMP, MTJSRC, and Homotopy.
8.3.3. Training and classification times
One of the greatest advantages of LASRC is its scalability to large

datasets while maintaining rapid classification at a mean rate of
30 Hz over all PubFig + LFW and Facebook datasets. On the largest
Facebook dataset with over 90k training faces, LASRC classifies fas-
ter than all other realtime methods except NN. Furthermore, train-
ing time is under a minute except for the FB1024 datasets where it
peaks at 2.1 min. While SVM classification is extremely fast, LASRC
can train 95 times faster while still achieving similar or better re-
call at 95% precision. It is important to note that SVM training time
can be reduced by limiting the maximum number of iterations;
however by doing this, we found precision and recall dropped stee-
ply while training time remained much higher than LASRC. Like-
wise, using 10,000 randomly subsampled negative examples for
each class in the one-vs-all SVM reduced training by 4 times, but
also significantly reduced recall by 9–16%. Even with these speed-
ups, LASRC still trains 25 times faster than SVMs. Therefore, we
present results with LIBLINEAR’s default maximum number of iter-
ations and without any subsampling. While LASRC only approxi-
mates SRC’s performance, we feel a 2.1% mean drop in recall at
95% precision is worth reducing classification from 4–11 s to 22–
44 ms, a 100–250 times speedup. Fig. 16 depicts the timeline for
realtime methods.
Please cite this article in press as: E.G. Ortiz, B.C. Becker, Face recognition for we
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9. Conclusions

In this paper, we present a novel Linearly Approximated SRC
(LASRC) algorithm that excels at large-scale, realistic face identifi-
cation tasks in open-universe scenarios where unknown and dis-
tractor faces must be rejected. Combining the speed of least-
squares with the robustness of sparse representations, LASRC im-
proves upon SRC with only one extra, easily-tunable parameter
K. By selecting a small pool of K training samples for ‘1-minimiza-
tion with a linear regression approximation, classification time is
greatly reduced with only a small loss in recall. We extensively
evaluate traditional, sparse, and least-squares algorithms with re-
spect to sparsity and locality under real-world scenarios on two
very large and diverse face datasets: (1) a combination of PubFig
and LFW and (2) a new Facebook dataset. Our results show linearly
approximated sparse representations with local features are very
much applicable to real-world face identification tasks. While pop-
ular algorithms may be less-suited to dynamic, web-scale scenar-
ios because of slow training times (SVMs) or slow classification
(SRC), LASRC represents a good compromise that both trains and
classifies rapidly while retaining good recall and precision. LASRC
exhibits the advantages of SRC with at least 100X faster classifica-
tion and achieves better performance than other fast sparse meth-
ods. Furthermore, our approach compares well to SVMs while
training orders of magnitude more rapidly, even against state-of-
the-art algorithms designed for speed and tuned for fast, approxi-
mate training. Finally, our approach outperforms many recent real-
time algorithms in speed, accuracy, and recall.

In the future, better sample selection for the training set, a more
sophisticated method of rejecting distractors, and tighter integration
with ‘1-minimization algorithms could benefit LASRC. For faster per-
formance, one could reduce dimensionality during the linear regres-
sion step and reduce ‘1-minimization iterations for speed without
significantly impacting performance. Similarly, multi-threading or
GPU acceleration would likely speed up LASRC by several times. For
better accuracy, new feature representations could be explored. In sit-
uations where many training faces per subject or frontal faces are not
available, more evaluation is needed. Performance could be boosted
with expectation–maximization, where candidate samples are
proposed and ‘1-minimization evaluates them.

While our presented approach is a promising step towards fast,
web-scale face recognition, there is much room for improvement.
We hope that by releasing descriptors for our datasets, a utility
to download and create datasets from Facebook, and a MATLAB
b-scale datasets, Comput. Vis. Image Understand. (2013), http://dx.doi.org/
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toolkit for face recognition, future researchers will be able to more
easily develop and evaluate new algorithms for realistic, open-uni-
verse face recognition scenarios.
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