
 
 
 
Faculty Statement: 
I certify that the work done by all students on this project is consistent with a senior design course and that the 
vehicle has been significantly modified for this year's competition. 
 
 

__________________________________ 
Dr. Fernando Gonzalez 

fgonzale@pegasus.cc.ucf.edu 



1. Introduction 
 This paper proudly presents the latest effort in ground-based robots by the University of Central Florida 

(UCF) called Calculon. Calculon is competing in the 14th annual Intelligent Ground Vehicle Competition (IGVC) 

in June, 2006. This vehicle is the culmination of many hours of work by dedicated team members using their 

experience from UCF’s previous entries in the IGVC. Calculon has been designed and constructed to excel at all 

competitive events at the IGVC and addresses all problems encountered by previous entries. The goal of Calculon 

is an intelligent, flexible, and capable robotic platform which leverages an incremental design process, modular 

software design, innovative concepts, and the use of commercial off-the-shelf products (COTS). 

2. Design Paradigm  

2.1 System Design 

 Through experience and research in robotic systems design and 

implementation, it was found that a strict and unyielding design process, 

such as The Design Life Cycle, was not well suited to the team, lab structure 

or approach to this competition.  Instead, an incremental design and 

development process was followed, which allows for more flexibility when 

needed as well as parallel development from various sub-groups, which was 

essential to the team. 

The incremental design process used follows the ‘Validation V’ 

[1].    This method extends the Spiral Model [1], following a ‘V-shaped’ 

flow, which includes requirements stage, system design, construction, 

testing and completion.  Initially it is difficult to identify how this is an 

incremental model; however, by connecting the ‘Validation Vs’ 

together you can see that a ‘W’ is formed representing the 

synchronization of multiple teams working together.  With the use of 

COTS components during construction along with the use of 

standardized hardware, software interfaces, and protocols, the teams were able to attain modularity throughout the 

entire project that allowed many of the components to be built and worked on simultaneously.  This ‘V-W’ 

paradigm works exceedingly well with this level of modularity.  During project pre-planning, the team found this 

design paradigm to be most realistic for the group in terms of actual implementation.  Many other design 

strategies seem feasible, but for a small group the ‘Validation V-W’ concept is more appropriate. 

Figure 1: Illustration of the 
Validation 'V' 

Figure 2: Parallel team development 
with the 'V-W' paradigm 

2.2 Implementing the Design Process 

 This methodology was executed by conducting weekly meetings where the layout of individual 

components was discussed and designed as a team, but completed individually. In the end each component was 

brought together to form a complete package. The weekly meetings ensured compatibility between modules, 

reducing risk associated with software development, and sharing new ideas with inexperienced team members. 

  1



2.2.1 Software Documentation 

 To reduce risk and distribute information between software developers, a strict code documentation 

process was implemented. Using the auto-documentation program Doxygen [2], creating electronic documents 

describing the relationships between modules and their functions was a simple task, saving time for developers to 

write software.  Using the commenting standards required by Doxygen, algorithms and interfaces were described 

consistently, reducing confusion when integrating different modules. 

2.3 Team Organization 

 The Calculon team consists of 

dedicated volunteer students from various 

disciplines at UCF including Computer, 

Electrical, and Mechanical Engineering. 

3. Design Innovations 

When planning the systems for Calculon, importance was placed upon effectively developing solutions 

that solve the goals of the IGVC. The team felt that high flexibility and use of COTS components was a major 

factor in rapidly developing hardware and software systems for both known and unforeseen problems. A flexible 

system is one where solutions are not hard-coded or fixed to perform in only a single set of conditions and must 

be easily adaptable to new objectives or situations. As such, innovations were introduced through a set of novel 

tools and approaches that Calculon uses to achieve the IGVC objectives: COTS components, machine learning 

techniques, Discover Vision, and non-pixel based mapping.  

3.1 Hardware Innovations 

To create a winning vehicle over previous UCF efforts, the Calculon team made use of a COTS platform 

and high quality sensors for obstacle detection and vehicle control. Using an electronic wheelchair as the base 

reduces construction time and guarantees chassis reliability. Use of a more accurate DGPS and digital compass 

also improves vehicle control and stability over previous designs. The primary sensor suite includes a SICK LMS 

LIDAR combined with a high-quality 3CCD digital video camera. 3CCD creates significantly higher quality data 

for vision processing over 1CCD. The high color and resolution images produced by a 3CCD camera make 

accurate vision processing a reality in varied lighting conditions. 

3.2 Machine Vision 

In the area of machine vision, two major innovations eased the tedious process of developing and 

combining machine vision algorithms to best identify objects in the environment: the use of machine learning 

algorithms and the creation of a rapid prototyping tool called Discover Vision. When identifying obstacles, 

variations in obstacle types, sizes, and poses can make classification difficult. To deal with these problems, a 

machine learning ARTMAP (an extension of the Adaptive Resonance Theory) based Neural Network [3] was 

investigated. The ARTMAP trains on a representative set of obstacle features (size, aspect ratio, color, density, 

etc.) to distinguish noise (such as a bright patch of grass) from a true obstacle. When compared to a simple 

thresholding approach that eliminates noise based on a fixed size or density threshold, the ARTMAP enhances 

  2



flexibility. If new obstacles or variations are encountered, it only takes a short while to prepare and train the 

ARTMAP to recognize the new obstacle type, improving the rapid adaptability of the system.  

Discovering the correct sequence of image processing filters to clean up and enhance an image for 

obstacle or line detection is a time consuming process. The solution space is extremely large and processing time 

can have a major impact on system performance. After researching other efforts to automate the process of 

evolving filter sequences [4], a genetic algorithm (GA) was used to create filter sequences for isolating lane-lines 

and removing background noise from images for line detection.  The GA generated filter sequences of different 

lengths, combinations, and parameters. A filter sequence was evaluated based on how much time was required to 

process the image and how accurate line detection results were. The GA found solutions superior to previous 

methods used in both accuracy of line detection and processing time in different lighting conditions. Compared to 

the best human-determined solution used, the best-evolved solution performed roughly three times faster with 

double the accuracy. Using this system it is possible to find the best method for lane-line detection within hours 

based on new training images for different environments. The best solution found for line-detection is described 

in more detail in section 7.3.4 of this paper. 

3.2.1 Discover Vision 

The final machine vision innovation focuses on the creation of a rapid application development tool to 

better facilitate the vision system’s development time. The need for such a tool arose from C++’s notoriously long 

compile times. To change the order or tweak the parameters of the machine vision algorithms used to identify 

lines and obstacles, a developer would have to close the program, make the changes to the code, wait for a long 

recompile & linking process, and finally rerun the program. To combat this time-consuming method of testing 

and experimenting, the team developed a rapid prototyping tool called Discover Vision 2.0. Based off the original 

Discover Vision written by the Calculon 2005 team, the aim of the tool is to enable developers to dynamically 

add, modify, or remove vision related algorithms with minimum latency and interruption between edits.  

 Discover Vision 2.0 is modeled after 

existing tools, such as MatLab and the original 

Discover Vision [5], presenting an interface 

capable of easily manipulating images or video. 

Discover Vision is composed of two parts, a 

Graphical User Interface (GUI) and backend 

module called the Discover Vision Engine.  The 

GUI of Discover Vision sports two main 

components: a code editor and image display. 

The code editor incorporates syntax highlighting 

and line numbers to boost productivity. The 

image display uses two modes: a single pane for 

showing the full details of an image, or split N x N panes, each pane containing a separate scaled down image. 

Figure 3: Discover Vision GUI 

  3



The split panes allow multiple filtered images to be viewed simultaneously in real time. This is extremely useful 

to determine the effectiveness of a specific filter. To maximize the usefulness of Discover Vision 2.0 (forthwith 

referred to as just Discover Vision), it can process images from a number of different sources, including a series 

of pictures, video cameras, and saved videos. 

 A simple scripting language was developed for Discover Vision in order to interface the GUI to the 

Discover Vision Engine. The scripting language currently supports over 22 classes and nearly 400 member 

functions, and it is easily extensible. The scripting language supports overloaded functions as C++ does and offers 

the ability to create user-defined functions that can be called from the GUI. To increase speed, the script is 

compiled into byte-code, which is run by the Discover Vision Engine. Whenever a ‘recompile’ occurs, the byte 

code is reloaded without any interruption to the program’s execution resulting in instant changes in the video 

stream as the new set of filters is running.  Using scripts, a completely new vision system can be created without 

changing any underlying C++ code of an application using the Discover Vision Engine. 

Two unique features have been added to Discover Vision, increasing its value: pipelined filters and plug-

ins. Pipelined filters are multiple filters that do not depend on each other and execute at the same time in different 

threads. Due to the current implementation of most CPU architectures, executing several filters simultaneously 

allows the processor to balance processing load better than executing filters serially. The primary reason for this is 

that if the CPU needs to pause the execution of one filter to wait for data, the CPU can execute one of the other 

pipelined filters. This reclaims CPU processing power that would otherwise be wasted and experiments have 

shown a four-fold performance improvement. In the team’s attempt to ensure flexibility in all areas of the system, 

a plug-in architecture was added to Discover Vision. Without plug-ins, all the filters developed in C++ must be 

hard-coded into the application. If a new filter is created, the developer needs to add additional lines of code to the 

Discover Vision source and then recompile the program. With a plug-in architecture, all of the filters can be 

created separately and placed into a special “plug-ins” folder. Discover Vision will then load all these plug-ins 

dynamically at start up. This represents significant flexibility, as any member of the team can create a filter and 

use it in Discover Vision immediately without knowledge of the Discover Vision source code.  Use of the 

Discover Vision program is further described in section 7.3 of this paper. 

3.3 Geometric Based 3D Mapping (Non-Pixel Based Mapping) 

In previous years at IGVC, UCF teams used pixel/image based representations for building maps of robot 

surroundings. This method had sensors draw obstacles into an image used by path-planning and obstacle 

avoidance software. Although easy to understand and implement, this method requires intensive processing time 

when performing map analysis because it becomes an image-processing problem. For example, if obstacle 

avoidance software needed to scan for obstacles within a radius of a point in the map, every single pixel covering 

the area of this circle would need to be examined. In summary, after a sensor has identified an obstacle and drawn 

it in the map, it must be rediscovered by obstacle avoidance software in the map image. This can be extremely 

computationally expensive and redundant, slowing down system performance. A new representation designed to 

solve this problem abandons the pixel/image based method in favor of geometric representations.  

  4



In this method, all obstacles, lane-lines, and other features are represented by data structures containing a 

feature’s position, height, width, and length in the map. The map is broken down into smaller grids and obstacles 

are sorted. Each grid section of the map keeps track of how many features are located inside of it, and features can 

belong to multiple grid sections based on their dimensions. Using this representation, if a process needs to 

perform the same radial scan mentioned previously, a simple two-step method is used. First, a check to see what 

map grids the scan encompasses and only if those grids contain features is the second step performed.  If features 

are found, they are checked using rules of geometry to determine if they are within the scan area. This drastically 

reduces the amount of processing time required because grids without obstacles are ignored, unlike the previous 

image based method requiring every pixel to be checked. Experiments performing a depth-first search with a 

depth of five and ten branches at each node on a local map showed a performance increase of 1000% over 

previous efforts. Additional benefits to this technique not found or difficult to do with the previous method 

include: separation of left and right lines of a lane, calculating lane direction, and reducing the amount of data 

represented in the map by grouping obstacles together into a single structure. This design innovation allows path-

planning and obstacle avoidance, described later in this paper, to perform at a much higher frequency. 

4. Mechanical System 

In the continuing effort to use COTS components, a Ranger II Storm 

Seriestm motorized wheel chair was chosen as the base chassis. The wheel 

chair fits all of the project’s needs providing a stable mobile platform with 

powerful motors, integrated motor controller, and large rugged wheels. The 

wheel chair uses a differential drive system making it very maneuverable 

and easy to control. In previous projects, an Ackerman drive system was 

used which made path-planning and control more difficult in tight areas. The 

zero-degree turning radius provided through differential steering lets the 

vehicle navigate around all obstacles easily. 
Figure 4: CAD Model of Chassis 
Modifications 

Two large motors control the 12.5-inch diameter front wheels. Two small caster wheels allow for smooth 

motion and in-place turning. In addition to the wheel chair frame, additional mechanical components were added 

to facilitate the robotic platform. This includes a center pole supporting the digital video camera and DGPS 

antenna. Also added was a front mounting bracket to attach the LIDAR with protective hood to shield it from the 

environment and any ambient infrared light that could interfere with its operation. Finally, a drawer added to the 

back of the platform houses electronics necessary for operation as well as power distribution units. The front 

panel of the drawer contains power switches, battery charging port and electronics reset. On top of the drawer is a 

cork-padded resting place for the main computer described in more detail in the electrical systems section of this 

paper. A fiberglass cover provides moderate environmental protection from light rain allowing continuous 

outdoor operation. This cover also provides shade, making the screen for the main computer easier to see in all 

outdoor lighting conditions. 

  5



5. Electrical System 

5.1 Power Distribution 

 Calculon’s power is provided from two 55Ah 12-volt 

batteries connected in series to provide a single 24-volt power 

supply. The 24-volt source powers the wheelchair platform’s motors 

and motor controller. The platform’s motor controller also provides a 

5-volt power source for custom electronics needed to interface the 

motor controller to the computer system. This 24-volt power source is 

also connected to a DC-to-AC inverter that supplies power for the main 

computer and the digital video camera. The 24-volt source also connects to a 24V-to-12V and a 24V-to-24V 

converter. The 24V-to-24V converter functions as a regulator to guarantee a 24-volt source for the SICK LIDAR 

and Trimble DGPS. The 24V-to-12V converter provides a regulated 12-volt source to power the magnetic 

encoders, digital compass, and wireless E-Stop. Two LED’s on the front of the electronics drawer provide instant 

verification that electrical systems are functioning properly. 

Figure 5: Power Distribution 

5.2 Electronics 

 A PIC 16F876A MCU and a D/A converter are used to interface with the onboard motor controller of the 

wheel chair. Through this interface, the MCU can vary the speed and steering of the wheel chair. A second PIC 

MCU is used to capture signals from the magnetic encoders mounted on each wheel. An RS-232 connection from 

each PIC MCU to the main computer allows it to get encoder information and control the speed and steering of 

the vehicle. Two individual connections were used to prevent communication saturation. This lets the MCU 

connected to the encoders continuously transmit information while not blocking drive commands to the MCU 

interfaced to the motor controller.  Encoder information is used for both dead reckoning and vehicle control. 

 If one were to assign a ‘brain’ to Calculon, it would no doubt be the Alienware Area-51m 7700 desktop 

replacement notebook. With an Intel Pentium 4, 3.4 GHz Processor with Hyper-Threading Technology and 1.0 

Gigabyte of RAM, the computer controls driving, path-planning, vision systems and interacts with the rest of the 

robot’s systems via multiple RS-232 serial interfaces, RS-422 serial interface and FireWire. The computer runs 

the Microsoft Windows XP operating system.  

 When not in autonomous mode a Logitech wireless joystick is used to drive Calculon. This joystick’s 

receiver is connected to the main computer over USB, and the server program uses information from it to send 

desired speed and steering commands to the onboard electronics. The server program is further described in the 

software section of this paper. The wireless joystick lets a user drive Calculon manually and switch between 

autonomous drive modes within an operational range of 50 feet.  

6. Sensors 

 Highly accurate and efficient sensors are used by Calculon. A SICK brand LMS-291 LIDAR provides 

two-dimensional information up to 30 meters in front of the vehicle in a full 180° sweep. This information is 

  6



transmitted back to the main computer via RS-422 at 500kbps giving exact placement of obstacles relative to the 

vehicle in real-time. 

 A Sony DCR-HC1000 3-CCD Mini-DV camera is used for machine vision. This camera provides a clear 

720x480-resolution image. On previous vehicles 1CCD web-cams were used which do not handle varied outdoor 

lighting conditions representative of the IGVC. The 3-CCD chip provides high quality color and white balance 

reduction in various lighting conditions. 

 For location of GPS waypoints, a Trimble DSM 132 DGPS is used. This provides sub-meter accuracy 

with an update rate of 1Hz. The Trimble is connected to the main computer over an RS-232 connection at 

19200bps. The Trimble was chosen because of its high accuracy and reasonable price. Latitude and Longitude 

information from the Trimble is converted to Universal Transverse Mercator (UTM) System. UTM provides a 

cylindrical projection in meters, which is highly accurate for use in waypoint finding.  

 A TCM2-50 digital compass provides heading, pitch, and roll information. Internal filtering keeps the 

compass accurate within two degrees. Heading information updates at a rate of 10Hz with filtering, providing 

almost instantaneous response to physical vehicle movement. Like other sensors in the system, it connects to the 

main computer via RS-232 at 19200bps. The TCM-250 was chosen over others because of its fast update time and 

accuracy, reducing oscillation when controlling vehicle heading. 

Two Baumer Electric MDFK 08G2101 magnetic sensors are placed on each drive wheel. Each reader 

uses a 256 pulses ring magnet with 16 pole-pairs. The pulses from these sensors are used to calculate vehicle 

speed and position. This information is used for speed and steering control as well as dead reckoning. The output 

is connected to both PIC MCUs with one transmitting to the main computer via RS232 and the other controlling 

speed and turning rates. The dead reckoning position calculated using the magnetic encoders is used by a Kalman 

filter to reduce position error. In the event of lost GPS signal, position updates are replaced by the dead reckoning 

position.  This allows the vehicle to continue operation while waiting for return of GPS signal.  These magnetic 

sensors are easy to integrate with the COTS chassis and give fast and accurate information. 

 

Figure 6:  Systems Integration for Calculon 

  7



7. Software System Design 

The overall goal for Calculon is to leverage COTS components in order to build a functional, easy to use, 

easy to maintain, and modular robotic platform. On top of this platform is the intelligence of the system, the 

software. After exploring various alternative programming methods such as pre-built robotic control libraries and 

visual based programming tools such as LabVIEW, it was decided none of these options afforded the 

programming team both the modularity and the low-level control they wanted. Instead, the software was 

implemented in C++. Since the software team was already knowledgeable in C++, an additional training phase 

was not necessary to learn a new language and provided the team with the flexibility and low-level control 

desired. In addition, the use of C++ provides the execution speed needed for real-time applications. To avoid 

some of the typical complexity problems associated with C++, a strict object-oriented development guideline was 

instituted resulting in high quality and reusable software. 

 In keeping with a modular software system, two main components make up the software of Calculon: the 

server and the client. The server program acts to maintain vehicle speed and steering while continuously 

retrieving positional sensor information and wireless joystick input. This server is a low-level system upon which 

intelligent systems can be built by providing a standard interface to drive the platform and capture sensor 

information for clients. The client and the server communicate over a TCP/IP connection. The client program acts 

as the intelligence of Calculon. This client performs obstacle detection, path-planning, and obstacle avoidance. It 

is able to drive the vehicle by sending speed and steering commands to the server. 

7.1 Server 

 The server program performs two main functions. The first 

is to create a base system for platform control and aid development 

of higher-level programs. The second is for manual driving of the 

vehicle by wireless joystick and initiation of autonomous drive 

mode. The server program interfaces to the DGPS, compass, 

encoders MCU and vehicle control MCU. It continuously processes 

the output from the sensors and makes it available to the client over 

TCP/IP. This acts as a level of abstraction so that sensors can be 

replaced or modified without affecting the client program. A Kalman 

filter uses information from the wheel encoders to reduce error in position from the DGPS, and provides updates 

in position through dead reckoning during loss of DGPS signal.  Sensor information is displayed on a GUI for 

quick debugging, (Figure 7). The GUI displays the current heading, position, and speed of the vehicle, as well as 

the mode of operation (Autonomous, Manual, or E-Stop), so that the user can quickly determine if a sensor is 

functioning. Settings for these sensors can be modified through built-in menus. This program also provides an 

interface for the client to set the speed and steering rate of the vehicle. All of this functionality frees the client 

from having to interface directly to sensors and vehicle actuators using a standard interface. 

Figure 7: Server program user interface 

 

  8



7.2 Client 

 The client designed to connect to the server is the intelligent behavior engine of Calculon. Within this 

program machine vision, path-planning, and obstacle avoidance is performed. While connected to the server, 

position and heading information is retrieved, and the desired speed and steering rates are requested. Two 

different path-planning algorithms are used by the client, one for the Autonomous Challenge, and the other for the 

Navigation Challenge. Specific path-planning algorithms are chosen based on requirements of the challenge. The 

differences in the path-planning are further described in the Autonomous Challenge and Navigation Challenge 

sections of this paper. Both versions use the same machine vision engine, driver program, lookout, LIDAR 

interface, local map, and server interface. These systems are further described later in this paper. A GUI displays 

the local map, video from the camera, classified image data, and output from the path-planner. This interface is 

extremely useful for quickly determining what the vehicle detects and where it plans to go. Buttons and settings 

tabs on the interface switch between Autonomous/Navigation Challenge modes and other configuration settings. 

7.3 Vision System 

 The vision system is created using Discover Vision.  The Discover Vision Engine is incorporated into the 

client program, and runs scripts compiled using the Discover Vision GUI.  The key modules used by the scripts 

include color classification, color segmentation, obstacle recognition, and line detection. Through this process, the 

surrounding environment is mapped from the incoming video of the Sony camcorder. Because the LIDAR can 

identify most solid 3D obstacles such as cones and buckets, special emphasis is placed on the vision system to 

identify lines and non-solid 3D obstacles such as barricades. 

 7.3.1 Color Classification Algorithm 

One of the most important filters used is an 

adaptation of a Gaussian-based skin color-classification 

system [6]. It is trained on images found to be typical of the 

course. Training consists of using images from the camera 

system along with hand made custom classification masks 

indicating which colors to train on. The training algorithm 

then places a small Gaussian sphere of either positive or negative values depending on the mask into a large RGB 

cube. Once the training has been completed, color recognition is performed on new images by comparing each 

pixel in the input image to its corresponding location in the RGB cube. If the value at that location is over a preset 

threshold (meaning that color has been previously trained on), then the color is said to be detected. One of the 

major advantages to this method is that the colors are classified using a fast lookup during runtime, and color 

classification can be re-trained to handle different environments. 

Figure 8:  Color classification Training Image and 
Mask (Training on the Color Orange) 

7.3.2 Image Segmentation 

Image segmentation is the process of logically grouping pixels representing some object in the image into 

a cluster or segment. The basis for the image segmentation performed is the color classification algorithm. 

Because all obstacles at the IGVC have colors distinct from the surrounding environment, color classification is 

  9



used on each image to detect which pixels are colors of competition obstacles. A fast line-scanning algorithm [7] 

is used to group pixels into segments and calculate a number of useful features about them. These features include 

size, density, aspect ratio, centroid, contour length, compactness, contour bending energy, and average color [8].  

7.3.3 Obstacle Recognition 

 Once the image segments have been extracted from the image, the noise must be separated from the real 

obstacles through an obstacle recognition (or filtering) process. This process involves analyzing the different 

image segment features and attempting to remove those segments that most likely represent noise. Two different 

methods were implemented: thresholding and a machine-learning algorithm. Often times, a custom threshold on 

selected features such as size can best eliminate noise because it often has well defined characteristics (small size, 

high randomness, etc). However, such a model takes time to develop, and in cases where quick adaptability is 

required (for instance, the addition of a new obstacle type), the machine learning algorithm mentioned earlier, 

ARTMAP Neural Networks [3], [9], have proven to be quite successful in achieving nearly the same accuracy as 

a hand-tweaked model with significantly more automation. The ARTMAP can be re-trained for a new obstacle 

type in a matter of minutes, resulting in rapid adaptability when new obstacle types are introduced.  

7.3.4 Line Detection 

Figure 9: Original image (left), filtered image (middle), classified lines (right). 

 Line detection is 

performed by applying a Hough 

Transform [10] across a 

segmented filtered image. First, 

several filters are used to 

preprocess the image before 

applying line detection. These 

filters serve to remove noise and other obstacles that do not represent lines. The Genetic Algorithm mentioned in 

the Innovations section is responsible for the evolved filter sequence used which includes the following filters:  

sub-sampling, blurring, edge detection, thresholding, and erode [11].  The resulting image is decomposed into a 

matrix of 5x3 cells and the Hough Transform is applied to each one.  Once line segments are identified, an 

additional step is taken to join adjacent lines together.  The benefit of segmenting the image into a matrix before 

applying the Hough Transform is the ability to find left and right lane-lines and approximate curves in the course. 

7.4 Cartographer 

 The cartographer program implements the non-pixel based mapping method described in the Innovations 

section of this paper. This system combines data from the SICK LIDAR and vision system and includes built-in 

functions for analyzing the map.  These built-in functions make it easy to scan regions or paths within the map, 

reducing the complexity of path-planning software.  Cartographer is the main juncture, which connects obstacle 

detection (sensors) to obstacle avoidance software (path-planning).   

 

 

  10



7.4.1 Reducing SICK LIDAR Data 

 An additional feature added to the SICK LIDAR interface is a technique for reducing the amount of 

incoming data.  During a typical 180° scan, the LIDAR can return up to 360 points where obstacles are located. 

Most of these points are clustered together, representing wall or obstacle outlines, and can be combined.  A split-

merge method [12] fits points from the LIDAR along line segments.  This method reduces the amount of data 

added to the map from the SICK LIDAR by a factor of 3-50, improving overall system performance. 

7.5 High-Level Control 

 Good sensor data is useless unless the vehicle is intelligent enough to make correct decisions and drive 

the course. The team’s design called for breaking the job of moving the vehicle through the competition courses 

into three major parts: driver, lookout, and path-planner. Breaking the high-level control into multiple parts made 

it easier to reuse as much code as possible.  The driver program actually moves the vehicle by controlling the 

heading and vehicle speed.  The lookout software ensures the vehicle does not drive into obstacles in the event of 

a previously unforeseen danger.  Finally, the path-planner software chooses what direction and velocity the driver 

should use to navigate the two different courses of the IGVC.  A different path-planning algorithm is used for 

each course and is described below. 

7.5.1 Driver 

 Since the software systems are built in a hierarchical way to make use of parallel development, the 

‘driver’ program receives navigation commands from the path-planner. Once the path-planner decides where to 

go, it is the responsibility of the driver software to make it happen. The driver uses a PID controller to choose 

steering/turning rates to maintain a compass heading chosen by the path-planner.  The driver also makes sure 

there is nothing directly in front of the vehicle when driving forward as an additional safety precaution.  Finally, 

the driver is capable of determining if the vehicle is stuck.  The vehicle is defined as stuck if it cannot do one or 

more of the following:  rotate in place, drive forward, or reverse.  Several strategies have been added to remedy 

these situations autonomously.  In the event the vehicle cannot turn in place, the driver program moves the vehicle 

forward or backwards at low speeds, attempting to get out of whatever terrain is causing problems.  This is 

extremely useful when turning in thick grass or loose dirt.  If the vehicle cannot drive forward, it reverses along 

the previous trajectory. After reversing, the vehicle drives forward at a higher speed, if the path in front of the 

vehicle is clear.  This is useful when the vehicle has trouble getting over any bumps. 

7.5.2 Lookout 

 The combination of the path-planner along with the driver software allows the vehicle to complete both 

competitions in an efficient and timely matter, in theory. However, good design as well as experience has proven 

that theory and reality do not always coincide, especially in competition. Because of this, a ‘lookout’ program 

whose responsibility is to keep track of nearby objects is used. In the unlikely event the path-planner routes the 

vehicle too close to an obstacle or a previously unforeseen, possibly moving obstacle appears in the vehicle path, 

the lookout program takes over control from driver program to stop the vehicle. The lookout continuously 

analyzes the vehicle’s surroundings and predicts if it will hit an obstacle based on the current speed, heading, 

  11



stopping time, and the desired vector the path-planner wishes to take. If it determines a hit is imminent, the driver 

and vehicle are stopped. When the vehicle comes to a complete stop, the path-planner attempts to plot a new 

course.  If no solution is found because the vehicle is directly in front of an obstacle, the vehicle reverses along 

the previous trajectory taken until a new vector to travel is found. 

7.5.3 Path-Planning for Autonomous Challenge 

 For the Autonomous Challenge, the path-planning system relies 

entirely on a local map. The robot is able to make decisions, plan a path and 

traverse the course entirely with only local obstacle and history information. 

During operation, Calculon records the vehicle pose on a fixed interval.  The 

vehicle pose includes global position, compass, pitch, roll, velocity, and a time 

stamp.  Using the history, statistical information is calculated, including 

trajectory traveled and a global position map. This data is extremely useful to 

maintain an overall direction along a course, avoiding the same dead-end/trap 

repeatedly, and determining if the vehicle has accidentally turned around. 

Figure 10: Visual Representation 
of Autonomous Challenge 
Algorithm 

 The main algorithm used during the autonomous challenge to choose a velocity and heading for the driver 

is a beam-search on the local map.  This method finds all possible ‘safe’ paths the vehicle can take.  A path is 

considered safe if it avoids obstacles and stays within the lane.  Path solutions found from the beam-search are 

then evaluated to find the best possible path for the vehicle to take.  Paths are scored based on their distance, 

changes to past trajectory, global history, and distance from lane center.  A path covering a greater distance is less 

likely to lead into traps or dead-ends.  Maintaining the current vehicle trajectory is important because it prevents 

the vehicle from turning around.  Considering the global history prevents Calculon from repeatedly re-entering 

traps or dead-ends. Therefore, paths that revisit global positions are ranked lower than those that do not. Finally, a 

path that leads to the center of the lane or follows the direction of the lane is considered best because it will keep 

the vehicle on course.   

7.5.3.1 Solid and Dashed Lane-Lines 

Lane-lines are treated differently from obstacles in the local map.  When identified, lane-lines are sorted 

based on orientation to the vehicle, namely left or right lane-lines.  Using this information, the direction and 

center of the lane is calculated.  As long as a lane-line (solid or dashed) is detected, Calculon knows what 

direction to travel to stay within the lane.  

7.5.4 Path-Planning for Navigation Challenge 

 Because the Autonomous Challenge requires the vehicle to stay within a lane, more information is 

required than in the Navigation Challenge, and therefore a different algorithm is used.  A queue of GPS points for 

the course is loaded from a text file and traversed in the order they are provided.  Calculon then scans the area in 

the front of the vehicle and chooses a compass heading that leads towards the desired waypoint while avoiding 

obstacles.  The direct path chosen must be wide enough for the vehicle to travel, with room for error to minimize 

the chance of hitting any obstacles. Similar to the Autonomous Challenge, additional criteria from the history is 

  12



used to evaluate the final compass heading taken. Compass headings that 

lead to areas already visited are ranked lower than those that do not, 

preventing Calculon from going into a loop in any area of the map.  

Finally, an additional precaution is taken when evaluating the final 

heading chosen.  To make sure that the vehicle is capable of following a 

wall, and not turning around and going back and forth trying to get to a 

waypoint, more extreme changes to the heading are ranked as less 

desirable.  This helps to ensure Calculon will travel around large walls or 

groups of obstacles to reach a waypoint or escape an enclosure while still finding the most direct route to the 

waypoint.  

Figure 11: Visual Representation of 
Navigation Challenge Algorithm 

7.5.5 Continuous Planning 

 In the previous sections of this paper, many innovations have been introduced which drastically improve 

the performance of the software systems over previous efforts by UCF.  With the reduced computation time 

needed for map building and analysis, it is possible to make path-planning updates with high frequency.  By 

continuously analyzing the current path for environmental changes, it is possible to drive autonomously at the best 

advisable speed because of better response time. Benchmark testing for both path-planning methods shows an 

average path-update time of 50ms, 20Hz, more than fast enough for driving at full speed. Additionally, Calculon 

determines the best advisable speed based on the density of obstacles near the path selected. Calculon runs at full 

speed in areas devoid of obstacles, but reduces speed when navigating in tight quarters.  

 
Figure 12: Software Systems Integration 

8. Vehicle Performance 

8.1 Speed 

 The COTS wheel chair used as a mechanical platform was built to transport an average sized person at 

low speeds.  Because of this, speeds are limited to approximately 1.2 m/s, which is within the maximum allowed 

speed of the IGVC.  The software system is able to maintain speed within 0.05 m/s. 

8.2 Ramp Climbing 

 Calculon’s wheelchair based mechanical platform was designed to carry humans weighing up to 300 lbs.  

With this fact in mind, Calculon was tested at a variety of different ramp gradients up to 10°.  Thus, the team does 

  13



not expect any ramp encountered during the competitions to pose any problem for Calculon. 

8.3 Reaction Times 

 Calculations based upon software loop times and sensor refresh rates show that Calculon is able to detect 

new obstacles and react in approximately 0.05 seconds.  During testing, Calculon was able to react and stop to 

new obstacles and unforeseen objects in its path within less than two feet when at full speed. 

8.4 Battery Life 

 As described previously, power is supplied by two 55Ah 12-volt batteries.  Testing has shown that these 

batteries can run Calculon for up to four hours on a single charge.  For the competition, interchanging the batteries 

with a second set allows for a total run time of eight hours without recharging. 

8.5 Obstacle Detection Distance 

 Calculon’s sensors are able to detect solid objects in front of it as far as thirty meters using its LIDAR.  

Depending on the angle of the camera, Calculon’s vision system is able to detect and identify objects as close as 

directly in front of it and as far as four meters.  Through testing, it has been found that the vehicle can reliably 

detect obstacles up to nine meters away through a combination of sensor data from the LIDAR and the digital 

video camera.  This distance is more than adequate for the completion of both competitions. 

8.6 Dead Ends, Traps, and Potholes 

Calculon is designed to deal with dead ends, traps, and potholes throughout both the Autonomous 

Challenge and the Navigation Challenge.  Calculon’s path-planning algorithms keep a complete record of the path 

previously taken by the vehicle.  This means that in the event that Calculon inadvertently plans a path into a dead 

end, it can reverse along its previous trajectory to a safe point and re-plot a new course.  Both path-planning 

algorithms make use of the path history to prevent plotting a course to the same dead-end or trap.  Potholes are 

treated the same as obstacles and avoided by the path-planner when detected. 

8.7 Waypoint Accuracy 

 Through the driver program’s high level of control and the use of the Trimble DGPS, Calculon is able to 

reach GPS waypoints within one meter.  This meets and exceeds the requirements of the competition to reach 

waypoints within a two-meter radius.  In the event of lost DGPS signal, dead reckoning software can continue 

updating the current position until signal is reacquired.  The accuracy of the dead reckoning software is within 0.2 

meters along a path up to 15 meters. 

9. Analysis and Conclusion 

9.1 Budget 
Item Company Cost Qty. Total Cost Our Cost 
Ranger II Power Wheel Chair Inva-Care $3,200.00 1 $3,200.00 $0.00 

SICK LMS LIDAR SICK-USA $4,449.00 1 $4,449.00 $4,449.00 

Sony DCRHC1000 3 CCD Digital 
Damera  

Sony $1,183.00 1 $1,183.00 $1,183.00 

Desktop Replacement Computer Alienware $3,065.00 1 $3,065.00 $3,065.00 

Trimble DSM132 DGPS Receiver and 
Antenna 

Trimble $4,050.00 1 $4,050.00 $1,000.00 

Encoder Readers and Rings Baumer Electric $104.00 2 $208.00 $208.00 

  14



TCM2-50 compass PNI Corporation $800.00 1 $800.00 $800.00 

Power Converters and Inverter Vicor $395.00  1 $395.00 $395.00 

Wheels  Inva-Care $124  2 $248  $496.00 

Fiberglass Material US Composites $294.00  1 $294.00  $294.00 

Machine Work Geo Systems $1,800.00 1 $1,800.00 $1,800.00 

Circuit Board 4pcb.com $48.00 1 $48.00 $48.00 

Miscellaneous Various $1,000.00 various $1,000.00 $1,000.00 

 Total $20,885.00 $15,061.00 

 

9.2 Safety Analysis 

 No design is complete without a proper analysis of the safety measures taken to guarantee that no person 

can or will be hurt during the operation of the vehicle.  The IGVC vehicles, while sometimes small, can be over 

100lbs in weight and are often driven by powerful, high-torque motors.  For Calculon, safety has been a primary 

consideration beginning in the pre-planning stages of design.  Electrical connections are kept safely within the 

electronics drawer.  Batteries are charged only via the charging port on the outside of the vehicle and all 

connections for sensors and vehicle control are done using standard port interfaces such as DB9, as opposed to 

direct solders.  This allows for easy and safe disassembly of the vehicle without worrying about electrical 

problems. 

In accordance with the IGVC rules, Calculon includes multiple forms of emergency stopping.  On the 

outer casing of the vehicle is a large red emergency stop button that is wired directly to the power control system 

of the vehicle.  When triggered, power is cut to motor controllers, enabling a mechanical brake, stopping the 

vehicle in place without rolling even while on an incline. An electronic wireless switch is also connected to the 

power system identically to the emergency stop button.  The range of the wireless emergency stop is up to 500 

feet and acts as another means to prevent any dangers to observers and surroundings.    

9.3 Conclusion 

 Calculon is the result of a concerted effort among the hardworking members of the Robotics Laboratory 

at the University of Central Florida.  The team is confident that Calculon’s hardware and software design, 

especially its new innovative systems, is well suited to accomplishing the goals of the 2006 Intelligent Ground 

Vehicle Competition. Calculon’s reliable chassis and sensor suite enable it to perform consistently at peak 

condition to achieve the IGVC goals. Its graceful handling of sensor failure, such as DGPS loss, while continuing 

to operate normally demonstrates the design’s ability to function in adverse conditions. The incremental 

‘Validation V’ design process involves all members in designing software modules and reduces risk between 

independent, parallel development. The flexible vision system solutions utilizing machine learning algorithms 

underscore Calculon’s capability to adapt to new situations and quickly assimilate changes in the environment. 

Fast mapping combined with continuous path-planning enables not only quick reaction times, but also higher 

speeds and more detailed analysis.  The Calculon team believes that these innovative design features will make 

Calculon stand out against the dozens of other competing vehicles at this year’s competition.  

  15



Appendix A: References 

 

1. Cockburn, A., “Using “V-W” Staging to Clarify Spiral Development,” Human and Technology, 1995. 

2. Doxygen documentation system. http://www.stack.nl/~dimitri/doxygen/index.html. 

3. Williamson, J. R., “A Neural Network for Fast Incremental Learning of Noisy Multidimensional Maps,” 

Neural Networks, Vol. 9, No. 5, 1996, pp. 881-897. 

4. Brumby, S.P., Harvey, N.R., Theiler, J., Perkins, S., Szymanski, J.J., Block, J.J., Porter, R.B., Glassi, M., 

Young, C.A., “Comparison of GENIE and Conventional Supervised Classifiers for Multispectral Image 

Feature Extraction,” IEEE Transaction on Geoscience and Remote Sensing, vol. 40, no. 2, 2002. 

5. Barber, D.J., Kiriwas, A., Gonzalez, F.G., Roberts, T., Becker, B.C. “Calculon.”  In the Proceedings of 

The 13th Annual Intelligent Ground Vehicle Competition.  AUVSI, http://www.igvc.org, June 2005. 

6. Yan, N.A., “Gaussian Mixture Modeling of Human Skin Color and Its Applications in Image and Video 

Databases”, SPIE/EI&T Storage and Retrieval for Image and Video Databases, 1999 

7. Bruce, J., Balch, T., Veloso, M. “Fast and Inexpensive Image Segmentation for Interactive Robots,” In 

the Proceedings of IROS-2000, Vol. 3, Takamatsu Japan, October 31, pp 2061-2066. 

8. Nixon, M and Aguado, A. Feature Extraction & Image Processing. Newnes, Woburn, 2002 pp 247-290. 

9. Anagnostopoulos, G. C. “Exemplar-based Pattern Recognition via Semi-supervised Learning” IJCNN, 

2003, Portland Oregon, July 20-24, pp. 2782-2787. 

10. Duda, R.O., Hart, P.E., “Use of the Hough Transform to Detect Lines and Curves in Pictures”, 

Communications of ACM, 1972. 

11. Seul, M., O’Gorman, L., Sammon, M.J., Practical Algorithms for Image Analysis: Description, 

Examples, and Code. Cambridge University  Press, New York, 2000 pp 118-176. 

12. Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R., “A Comparison of Line Extraction Algorithms 

using 2D Laser Rangefinder for Indoor Mobile Robotics.” In the Proceedings of the IEEE/RSJ 

International Conference on Intelligent Robots and Systems, IROS’2005, August 2006, Edmonton, 

Canada, pp 1929 – 1934. 

 

  16

http://www.igvc.org/

