

A Scalable and Efficient Outlier Detection Strategy for Categorical Data

A. Koufakou1 E.G. Ortiz1 M. Georgiopoulos1 G.C. Anagnostopoulos2 K.M. Reynolds3
1University of Central Florida, School of EECS, Orlando, FL

Emails: akoufako@mail.ucf.edu, eortiz@cs.ucf.edu, michaelg@mail.ucf.edu
2Florida Institute of Technology, Dept of ECE, Melbourne, FL - Email: georgio@fit.edu

3University of Central Florida, Dept of Criminal Justice, Orlando, FL -Email: kreynold@mail.ucf.edu

Abstract

Outlier detection has received significant attention in
many applications, such as detecting credit card fraud or
network intrusions. Most existing research focuses on
numerical datasets, and cannot directly apply to
categorical sets where there is little sense in calculating
distances among data points. Furthermore, a number of
outlier detection methods require quadratic time with
respect to the dataset size and usually multiple dataset
scans. These characteristics are undesirable for large
datasets, potentially scattered over multiple distributed
sites. In this paper, we introduce Attribute Value
Frequency (AVF), a fast and scalable outlier detection
strategy for categorical data. AVF scales linearly with the
number of data points and attributes, and relies on a
single data scan. AVF is compared with a list of
representative outlier detection approaches that have not
been contrasted against each other. Our proposed
solution is experimentally shown to be significantly faster,
and as effective in discovering outliers.

1. Introduction

Mining for outliers in data is an important research
field with many applications in credit card fraud
detection, discovery of criminal activities in electronic
commerce, and network intrusion detection. Outlier
detection approaches focus on discovering patterns that
occur infrequently in the data, as opposed to traditional
data mining techniques that attempt to find patterns that
occur frequently in the data. One of the most widely
accepted definitions of an outlier pattern is provided by
Hawkins [1]: “An outlier is an observation that deviates
so much from other observations as to arouse suspicion
that it was generated by a different mechanism”.

Outliers are frequently treated as noise that needs to be
removed from a dataset in order for a specific model or
algorithm to succeed (e.g. points not belonging in clusters
in a clustering algorithm). Alternatively, outlier detection

techniques can lead to the discovery of important
information in the data (“one person’s noise is another
person’s signal”) [2]. Finally, outlier detection strategies
can also be used for data cleaning before any traditional
mining algorithm is applied to the data. Examples of data
where the discovery of outliers is useful include irregular
credit card transactions, indicating potential credit card
fraud [3], or patients who exhibit abnormal symptoms due
to their suffering from a specific disease or ailment [4].

Most of the research efforts in outlier detection
strategies have focused on datasets that are comprised of
numerical attributes, or ordinal attributes that can be
directly mapped into numerical values. Quite often, when
we have data with categorical attributes it is assumed that
the categorical attributes could be easily mapped into
numerical values. However, there are cases of categorical
attributes, where mapping to numerical attributes is not a
straightforward process, and the results greatly depend on
the mapping that is used, e.g., the mapping of a marital
status attribute (married or single) or a person’s
profession (engineer, financial analyst, etc.) to a
numerical attribute.

Recently there has been some focus on data with
categorical or mixed attributes (e.g. He et al. [5],[6],[7],
and Otey et al. [8]). However these efforts have not been
contrasted to each other using the same data. In this paper,
we explore these methods and evaluate them using the
same datasets with regard to their efficiency (speed),
scalability, and effectiveness (accuracy) in detecting
outliers in categorical data.

Another issue that has only recently become the focus
in the literature is related to the large and distributed
nature of the datasets available today. With the explosion
of technology, the size of data for a particular application
has grown and will continue to grow. Also, most of the
data is distributed among different sites belonging to the
same or even different organizations. Transferring data to
a central location and then detecting outliers is typically
impractical due to data size and expense of moving it, as
well as data ownership and control issues. Hence,
successful outlier detection strategies must scale well as
the size and dimensionality of the dataset grow.

Furthermore, in order to deal with the large and possible
distributed nature of the data, the dataset scans should be
minimal as well.

In this paper, we introduce an outlier detection strategy
for categorical data, called Attribute Value Frequency
(AVF). We compare AVF with existing outlier detection
methods ([5],[6],[7],[8]) with respect to outlier detection
speed and accuracy. AVF is experimentally shown to
have a significant performance advantage, and to scale
linearly as the data increases in points and dimensions.
AVF does not depend on extra user parameters, and
performs only one dataset scan, thus would be efficient
for geographically distributed data.

The organization of this paper is as follows: In Section
2, we provide a thorough literature review. In Section 3,
we describe our proposed algorithm, AVF, and the outlier
detection algorithms mentioned above. Section 4 contains
our experiments and results. Finally, in Section 5, we
summarize our work and provide concluding remarks.

2. Previous Work

The earliest approaches to detect outliers, statistical-
model based methods, assume that a parametric model
describes the distribution of the data (e.g., normal
distribution), and are mostly single-dimensional or
univariate [9]. The limitations of these approaches include
the difficulty to find the right model for each dataset and
application, as well as the fact that their efficiency
declines as the data dimensionality increases [8]. Another
issue with high dimensional datasets is that the dataset
become less dense, which makes the convex hull harder to
determine (“Curse of Dimensionality”)[10]. There are
methods to help alleviate this problem, e.g. Principal
Component Analysis. Another idea to handle higher
dimensionality data is to organize the data points in
layers, based on the idea that shallow layers tend to
contain outliers more often than the deep layers (e.g.
[10]), these ideas however are impractical for more than 2
dimensions.

Distance-based approaches do not make assumptions
for the distribution of the data since they essentially
compute distances among points. These approaches
become impractical for large datasets (e.g. nearest
neighbor method has quadratic complexity with respect to
the dataset size). There have been improvements on the
original distance-based algorithms, e.g. Knorr et al. [2],
where an outlier is defined as an object O in a dataset T
that has at least p% of the objects in T further than
distance D from it. The complexity of their approach is
still exponential in the number of nearest neighbors. Bay
and Schwabacher [12] propose a distance-based method
and claim its complexity is close to linear in practice.

Figure 1. Distance-based methods miss outlier o2 [13]

Clustering techniques can be used with the idea that

the points that do not belong in the formed clusters are
designated as outliers. However, clustering-based
methods are focused on optimizing clustering measures of
goodness, and not on finding the outliers in the data [2].

Density-based methods estimate the density
distribution of the data and identify outliers as those lying
in low-density regions. Breunig et al. [13] assign a local
outlier factor (LOF) to each point based on the local
density of its neighborhood, which is determined by a
user-given minimum number of points (MinPts).
Papadimitriou et al. [14] present LOCI (Local Correlation
Integral) which uses statistical values based on the data
itself to tackle the issue of choosing values for MinPts.
All density-based techniques have the advantage that they
can detect outliers that would be missed by techniques
with a single, global criterion, as shown in Figure 1.
However, data is usually sparse in high-dimensional
spaces rendering density-based methods problematic [15].

Other outlier detection efforts include Support Vector
methods (e.g. [16]), using Replicator Neural Networks
(RNNs) [17], and using a relative degree of density with
respect only to a few fixed reference points [18].

All the aforementioned methods are geared towards
numerical data and thus are more applicable to numerical
datasets or ordinal data that can be easily transformed to
suitable numerical values [10]. In the case of categorical
datasets, there is little sense of ordering the data values,
then mapping them to numerical values and computing
distances (e.g., distance between two values such as TCP
Protocol and UDP Protocol [8]). Consequently, methods
such as those based on distance or density are unsuitable.
Also many previous methods are quadratic in complexity
with respect to the data size, which would be
unacceptable for large datasets. If we assume a distributed
setting, techniques relying on pair-wise distance
computations become infeasible as the different sites
would have to either exchange every local data point in
order to calculate distances or replicate all data points
globally.

In this paper, we implement and experiment with three
current outlier detection approaches directed towards
categorical data. The first is proposed by He et al. [7] and
is based on the idea of Entropy. The second technique by
Otey et al. [8] focuses on datasets with mixed attributes
(both categorical and numerical). The third technique in

[6] is also by He et al. Both methods by He [6] and by
Otey [8] compute an outlier score for each data point
using the concept of frequent itemsets (see [19]). Wei et
al. [15] also deal with outliers in categorical datasets and
use frequent itemsets, as well: they use hyperedges, which
simply store frequent itemsets along with the data points
that contain these frequent itemsets; since their method is
based on a premise similar to that in [6], it was not
considered in our experiments. Finally, Xu et al. [20] use
mutual reinforcement to discover outliers in a mixed
attribute space; however their method focuses on a
different outlier detection problem than the one described
in this paper (“instead of detecting local outliers as noise,
[they] identify local outliers in the center, where they are
similar to some clusters of objects on one hand, and are
unique on the other.”[20]).

Table 1. Terminology

Term Description
k Target input number of outliers
n Number of data points
m Number of attributes for each data point
q Number of Distinct values per attribute
l A specific attribute (ranging from 1 to m)

ix The i-th point in the dataset
ilx The l-th value of the i-th point in the dataset

D Dataset
I Itemset
F Frequent Itemset
FIS The Set of all Frequent Itemsets
Minsup Minimum support for the frequent itemsets
support(I) Support of itemset I

3. Algorithms

3.1. Greedy Algorithm

The algorithms in [5],[7] are based on the premise that
outliers are likely the points that, once removed from the
data, the dataset as a whole has less “uncertainty” or
“disorder”. In particular, they propose the idea of finding
a small subset (of size k) of the data points that contribute
to the elevated “disorder” of the dataset the most. The
idea of Entropy, or uncertainty, of a random variable is
attributed to Shannon [21]. Formally, if X is a random
variable, S (X) is the set of values that X can take, and
p(x) is the probability function of X, then the entropy,

),(XE can be defined as follows:
)(log)()(

)(
2 xpxpXE

XSx
∑

∈
−= (1)

Given a multivariate vector, X = {X1, X2, …, Xm} (or a
multidimensional dataset containing m attributes) and the
assumption that the attributes of X are independent, the

Entropy of X, E(X), is equal to the sum of the entropies of
each one of the m attributes, and is defined as follows:

)()()()(21 mXEXEXEE +++=X (2)
He et al. introduce a Local-Search heuristic-based

Algorithm (LSA) in [5], and a Greedy Algorithm in [7],
both relying on the entropy idea mentioned above. Since
the Greedy algorithm [7] is superior to LSA [5], we will
only discuss the Greedy algorithm. The Greedy algorithm
[7] takes as input the desired number of outliers (k). All
points in the set are initially designated as non-outliers. At
the beginning, the frequencies of all attribute values are
computed, as well as the initial entropy of the dataset.
Then, Greedy conducts k scans over the data to determine
the top k outliers. During each scan, every non-outlier is
temporarily removed from the dataset and the total
entropy is recalculated. The non-outlier point that results
in the maximum decrease for the entropy of the entire
dataset is the outlier data-point removed by the algorithm
in each scan.

The complexity of Greedy is)***(qmnkO , where k
is the target number of outlier points, n designates the
number of points in the dataset, m is the number of
attributes, and q is the number of distinct attribute
values, per attribute. If the number of attribute values per
attribute, q , is small, the complexity of Greedy becomes

)**(mnkO . Pseudocode for Greedy is provided in
Figure 3.

3.2. Frequent Itemset Mining (FIM)-based
Algorithms

In this section, we describe two algorithms based on
the concept of Frequent Itemset Mining. Frequent Itemset
Mining (FIM) has received considerable attention since
the seminal paper on the related subject of Association
Rule Mining by Agrawal and Srikant [19]. Given a dataset
D and a set of r literals, S = {i1,i2,…,ir} that are found in
D, we can define an itemset I as a non-empty subset of S.
For example, items in a supermarket could be “bread”,
“milk”, etc; then a possible itemset I could be {“bread”,
“milk”}. Given a user-defined threshold called minimum
support, minsup, a frequent itemset F is one that appears
in the dataset at least minsup times. The set of all frequent
itemsets given minsup is denoted by FIS. The support of
an itemset I, designated as support(I), is the fraction of
points in D that contain itemset I.

 He et al. in [6] observe that, since frequent itemsets
are “common patterns” that are found in many of the
points of the dataset, outliers are likely to be the points
that contain very few common patterns or subsets. They
define a Frequent Pattern Outlier Factor (FPOF) for
every data point, x, based on the support of the frequent
itemsets contained in x. In addition, they use a
contradictness score to better explain the outliers and not

to detect the outliers, so it is omitted from our discussion.
The FPOF outlier score is calculated as follows:

FIS

F
xScoreFPOF FISFxF

∑
∈⊆= ,

)support(
)((3)

The above score is the sum of the support of all the
frequent subsets F contained in point x, over the number
of all frequent sets in dataset D, FIS. Data points with
lower FPOF scores are likely to be outliers since they
contain fewer common subsets. The FPOF algorithm runs
the Apriori algorithm [19] first, to identify all frequent
itemsets in dataset D given minsup (FIS), then calculates
the outlier score in (3) for each data point, to identify the
top k outliers (see pseudocode in Figure 4).

The method by Otey et al. in [8] is also based on
frequent itemsets. They assign to each point an anomaly
score inversely proportionate to its infrequent itemsets.
They also maintain a covariance matrix for each itemset
to handle continuous attributes; we omit this part since
our focus is on categorical data. Specifically, they
calculate the following score for each data point x:

||
1)('

)(sup, I
xScoresOtey

minsupIxI
∑

≤⊆
= (4)

which is explained as follows: given subsets I of x which
are infrequent, i.e. support of I is less than minsup, the
anomaly score of x will be the sum of the inverse of the
length of the infrequent itemsets. If a point has few
frequent itemsets, its outlier factor will be high, so the
outliers are the k points with the maximum outlier score in
(4). This algorithm also first mines the data for the
frequent itemsets, then calculates an outlier score for each
point (see pseudocode in Figure 5). The authors state that
the execution time is linear to the number of data points,
but exponential to the number of categorical attributes.

3.3. Attribute Value Frequency (AVF) Algorithm

The algorithms discussed thus far scale linearly with
respect to the number of data points, n. However, Greedy
(section 3.1) still needs k scans over the dataset to find k
outliers, a disadvantage for the case of very large datasets
that are potentially distributed among different sites. On
the other hand, the Frequent Itemset Mining (FIM)-based
approaches (section 3.2) need to create a potentially large
space of subsets or itemsets, and then search for these sets
in each and every data point. These techniques can
become extremely slow for low values of the minsup
threshold, as more and more candidate itemsets need to be
examined. In this section we present a simpler and faster
approach to detect outliers that minimizes the scans over
the data and does not need to create or search through
different combinations of attribute values or itemsets. We

call this outlier detection algorithm Attribute Value
Frequency (AVF) algorithm.

It is intuitive that outliers are those points which are
infrequent in the dataset. Additionally, an ‘ideal’ outlier
point in a categorical dataset is one whose each and every
attribute value is extremely irregular (or infrequent). The
infrequent-ness of an attribute value can be measured by
computing the number of times this value is assumed by
the corresponding attribute in the dataset.

Let’s assume that the dataset contains n data points, xi ,
i = 1…n. If each data point has m attributes, we can write
xi = [xi1,…,xil,…,xim], where xil is the value of the l-th
attribute of xi. Following the reasoning given above, a
good indicator or score to decide if point xi is an outlier
can be defined as the AVF Score below:

∑
=

=
m

l
ili xf

m
xScoreAVF

1
)(1)((5)

where, f (xil) is the number of times the l-th attribute value
of xi appears in the dataset. A lower AVF score means
that it is more likely that the point is an outlier. The
choice for the AVF score can be justified by noting the
following. Since in (5) we essentially have a sum of m
positive numbers, the AVF score is minimized when each
of the sum’s terms are individually minimized. Thus for
an ‘ideal’ outlier as defined above, the AVF score will be
the minimum. Figure 2 contains an example with 12
points taken from UCI [22] Breast Cancer dataset. The
outliers are in bold (points 7 and 12). As this example
clearly illustrates, the outliers have infrequent values for
all or most of the 9 attributes, compared to the rest of the
data points.

Attributes Data
point 1 2 3 4 5 6 7 8 9

1 1 1 1 1 2 10 3 1 1
2 2 1 1 1 2 1 2 1 1
3 1 1 1 1 2 3 3 1 1
4 4 1 1 1 2 1 2 1 1
5 4 1 1 1 2 1 3 1 1
6 6 1 1 1 2 1 3 1 1
7 7 3 2 10 5 10 5 4 4
8 3 1 1 1 2 1 2 1 1
9 1 1 1 1 2 1 3 1 1
10 3 2 1 1 1 1 2 1 1
11 5 1 1 1 2 1 2 1 1
12 2 5 3 3 6 7 7 5 1

Figure 2. Example from UCI Breast Cancer Dataset

Once we calculate the AVF score of all the points, we

designate the k points with the smallest AVF scores as the
k outliers (see Figure 6 for AVF pseudocode). The
complexity of AVF is O(n*m) compared to Greedy’s
complexity, O(k*n*m), since AVF detects outliers after
only one scan of the dataset, instead of the k scans needed
by Greedy.

Input: Dataset – D
 Target number of outliers – k
Output: k detected outliers
Label all data points as non-outliers
calculate frequency of each attribute value
calculate initial entropy of dataset
while (not k scans) do
 while (not end of database) do
 read next record x and label x as outlier
 calculate decrease in entropy by removing x
 end while
 if (maximal decrease achieved by record x)
 add x to set of outliers
 end if
end while

Figure 3. Greedy Algorithm Pseudocode

Input: Dataset – D
 Minimum support – minsup
 Target number of outliers – k
Output: k detected outliers
FIS = Mine for frequent item sets (D, minsup)
foreach point x in D
 foreach frequent pattern F in FIS
 if x contains F
 FPOFoutlierScore(x) += support(F)/ length(FIS)
 end if
 end for
end for
return top k outliers that minimize FPOFoutlierScore

Figure 4. FPOF Algorithm Pseudocode

Input: Dataset – D
 Minimum support – minsup
 Target number of outliers – k
Output: k detected outliers
FIS = Mine for frequent itemsets(D, minsup)
foreach point x in D
 foreach itemset I ∈ x
 if FIS does not contain I
 Otey’s outlierScore(x) += 1/ length(I)

end if
end for
return k outliers that maximize outlierScore

Figure 5. Otey's Algorithm Pseudocode

Input: Dataset – D
 Target number of outliers – k
Output: k detected outliers
Label all data points as non-outliers
calculate frequency of each attribute value
foreach point x
 AVFscore = Sum(frequency each attrib. value ∈ x)/m
end foreach
return top k outliers with minimum AVFscore

Figure 6. AVF Algorithm Pseudocode

4. Experiments

4.1. Experimental Setup

We conducted all our experiments on a workstation

with a Pentium 4 2.6 GHz processor and 1.5 GB of RAM.
We implemented all algorithms in C++ and ran our own
implementation of Apriori [19] for mining frequent
itemsets for FPOF and Otey’s algorithms (minsup=10%).
We experimented with 5 real datasets from the UCI
Machine Learning repository [22], as well as artificially
generated datasets. An advantage of using artificially
generated data is the capability to work with datasets of
various sizes and dimensionalities.
A. Real Datasets (UCI):
- Wisconsin Breast Cancer: This dataset has 699 points
and 9 attributes. Each record is labeled as either benign or
malignant. Following the method by Harkins et al. [17],
we only kept every sixth malignant record, resulting in 39
outliers (8%) and 444 non-outliers (92%).
− Lymphography: This dataset contains 148 instances and
19 attributes including the class attribute. There are 4
classes where classes 1 and 4 comprise 4% of the data, so
they are considered as the outliers.
− Post-operative: This dataset is used to determine where
patients should go to after a postoperative unit (to
Intensive Care Unit, home, or general hospital floor). It
contains 90 instances and 9 attributes, including the class.
We regard class 1 and 2 as outliers (26 points total).
− Pageblocks: It contains 5,473 instances with 10
attributes. There are 5 classes, where one class is about
90% of dataset, so the rest of the data can be thought of as
outliers. We discretized the continuous attributes using
equal-frequency discretization, and removed half of the
outliers so that we have a more imbalanced dataset (i.e.,
280 outliers).
− Adult: This dataset has 48,842 points and 14 attributes.
We discretized the numerical attributes using equal width
discretization, and regarded as outliers the points with
income more than $50K/year (about 24% of the dataset).
We only kept every sixth point to make the dataset more
imbalanced.
B. Artificial Datasets: The experiments conducted with
the simulated data were used to showcase the speed and
associated scalability of the algorithms that we are
evaluating, and not their detection rates/capabilities
(effectiveness). The simulated dataset used was created
using available software by Cristofor [23]. The idea
behind these experiments is to see the change of each
algorithm’s performance as parameters change (e.g., an
important parameter is the size of the dataset, n). Another
parameter with which we experimented is m, the dataset
dimensionality. For example, Greedy calculates the
Entropy for each dimension of each data point. Finally, it
is worth mentioning that Greedy algorithm also depends

on the input number of outliers, k, while the other
algorithms do not. For the first experiment we used a
dataset with 10 attributes and input number of outliers,
k=30, and 1K to 800K data points. For the second
experiment, the dataset has 100K points and 10 attributes,
and the outlier target number k varies from 1 to 1K. For
the last experiment, the outlier number k is set to 30, the
dataset contains 100K points, and the number of attributes
is varied from 2 to 40.

4.2. Results and Discussion

Table 2 and Figure 7 depict the outliers detected by

each algorithm using the real datasets (Figure 7 contains
only the results for 3 sets due to space). As we see in the
experiments with the real datasets, the outlier detection
accuracy of AVF is the same as, or very close to Greedy.
For example, in Figure 7(a), all algorithms converge to
the 39 outliers for k equal to 56. While we notice similar
accuracy in detecting outliers for all algorithms for the
breast cancer, lymphography, and post-operative patients
datasets (Figure 7(a)-(c)), for the other two datasets
(Table 2(d)-pageblocks and Table 2(e)-adult), AVF has
lower accuracy than Greedy, while FPOF and Otey’s have
much lower accuracy (e.g. in Table 2(d) for k=900
Greedy detects 242 outliers, AVF detects 223, while
FPOF and Otey’s detect only 116).

Table 3 contains the runtime performance of all
algorithms using the first simulated dataset, with varying
number of data points, n (see also Figure 8(a)). For
example, in Table 3, for n=700K, Greedy finishes
execution at around 185 seconds, Otey’s methods at
around 3127 seconds, FPOF at 564 seconds, while AVF
has a running time of 1.33 seconds. Further experiments
(not shown due to space limitations) with larger
dimensionalities than in Figure 8(c) showed similar
results for AVF: e.g. for a dataset 150 attributes (k=30,
n=100K), AVF had a running time of about 2 seconds.

As we see from these results with real and artificially
generated data, AVF approximates very well the outlier
detection accuracy of Greedy, while it outperforms
Greedy for larger values of the data size, n, data
dimensionality, m, and the target number of outliers, k.
E.g., Greedy becomes exceedingly slow for larger n
values (Figure 8(a)), due to the increasingly more
expensive entropy calculations. AVF’s performance does
not change notably for larger k values, and it runs
significantly faster than Greedy with respect to both n and
m, as AVF relies on simple calculations for each point.
The FIM-based methods also become increasingly slower
for larger datasets (see Figure 8(a)), as they need to search
through all possible subsets of each and every point.
Higher dimensionalities of the datasets slow down these
two algorithms as well, because of the increasingly larger
itemsets that are created as the number of attributes grows
(see Figure 8(c)). The authors in [6] and [8] discussed

using a parameter for the maximum length of itemsets; for
example, if the user enters 5 as the max length, the
itemsets created contain 5 items or less. However,
experiments in [8] show that this negatively effects their
algorithmic accuracy.

Table 2. Results on the Real Datasets

(a) Breast Cancer
k Greedy AVF FPOF Otey’s
4 4 4 3 3
8 8 7 7 7

16 15 14 14 15
24 22 21 21 21
32 29 28 27 28
40 33 32 31 33
48 37 36 35 37
56 39 39 39 39

(b) Lymphography
k Greedy AVF FPOF Otey’s
2 2 2 2 2
4 4 4 4 4
6 5 4 4 4
8 6 5 5 5

12 (13) 6 6 5 5 (6)
15 6 6 6 6

(c) Post-Operative
k Greedy AVF FPOF Otey’s
10 4 3 3 1
20 7 7 7 7
30 8 10 9 9
40 12 11 10 10
50 13 12 12 13
60 20 16 17 18
70 21 21 21 21
80 24 24 24 24

(d) Pageblocks
k Greedy AVF FPOF Otey’s

100 45 40 19 19
200 81 84 42 42
300 130 120 63 63
400 157 168 74 74
500 177 189 80 80
600 183 201 94 94
700 213 206 96 96
800 237 214 110 110
900 242 223 116 116

1000 242 233 121 121

(e) Adult
k Greedy AVF FPOF Otey’s

100 24 27 21 16
200 41 45 42 37
300 69 71 64 54
400 87 88 82 66
500 107 104 89 77
600 124 116 114 96
700 147 139 137 112
800 171 164 148 139

(a) Breast Cancer

(b) Lymphography

(c) Post-Op

Figure 7. Actual Outliers Detected vs. Input Number
of Target Outliers, k, on real datasets

Table 3. Runtime in seconds for the simulated datasets
with varying data size, n, from 1K to 800K data points

Data Size
(thousands) Greedy AVF FPOF Otey’s

1 0.27 0.00 0.81 4.58
10 2.72 0.03 8.13 44.72
30 8.53 0.06 24.02 134.30
50 14.31 0.09 40.19 222.88
100 26.42 0.19 81.06 445.39
200 52.75 0.39 165.08 891.28
300 79.39 0.58 241.61 1337.06
400 106.14 0.80 323.97 1781.78
500 131.75 0.94 404.45 2233.74
600 158.70 1.16 484.00 2678.73
700 184.94 1.33 564.80 3127.22
800 212.08 1.56 667.55 3568.55

(a) Data Size, n, increases

(b) k increases

(c) Number of Attributes, m, increases

Figure 8. Performance for simulated data as various
parameters increase (milliseconds)

In addition, the algorithms based on Frequent Itemsets,

specifically FPOF and Otey’s, depend on the user-entered
minimum support threshold. In fact, different values of
minsup lead to improved accuracy of FPOF and Otey’s.
For example, using the pageblocks data and k=200 (see
Table 2(d)), Otey’s method with minsup=0.04 detected
120 outliers, while for minsup=0.03, it detects 51 outliers.
This is because lower minsup values will create more
frequent sets, while higher minsup values will make more
subsets infrequent. Also, lower minsup values make the
algorithms increasingly slower as more frequent itemsets
need to be created. This illustrates the challenge of
selecting an appropriate minimum support threshold.

The advantages of AVF are that it does not create
itemsets and that it entails only a single pass over the

entire dataset. Also, as shown from the experiments with
the simulated datasets, the runtime of AVF increases
particularly slowly with respect to n and m, in comparison
to the other three algorithms. Moreover, AVF eliminates
the need for difficult choices for any user-given
parameters such as minimum support or maximum
itemset length. However, experimentation with some
small datasets showed that the single scan of the data may
cause AVF to miss a few outliers that Greedy finds. This
effect was negligible in the real datasets with which we
experimented in this paper. We are examining a number
of avenues to increase the outlier detection accuracy of
AVF, but at the expense of declining performance.

5. Conclusions

We have compared and experimented with a

representative list of currently available techniques for
outlier detection in categorical datasets, using both real
and artificially generated data. These methods have not
been compared against each other before using the same
datasets. We have proposed a scalable and effective
outlier detection technique, called AVF (Attribute Value
Frequency). AVF lends itself to the nature of datasets
today, as its performance does not deteriorate given large
datasets or datasets of higher dimensionality. Specifically,
AVF has the following advantages:
– A computational complexity of O(n*m), where n is the

number of points, and m is the data dimensionality,
– AVF’s performance does not rely on user-specified

parameters such as minimum support,
– AVF scans the dataset only once to detect the desired

outliers, i.e. the number of data scans needed by AVF is
not influenced by the input number of target outliers, k,

– AVF is significantly faster than existing representative
techniques against which we compared it, while
maintaining virtually equal detection accuracy.

One of the limitations of AVF, mentioned at the end of
the previous section, and how to overcome it, is the topic
of some of our future work.

Acknowledgments: This work was supported in part by the
NSF grants: CRCD: 0203446, CCLI: 0341601, DUE: 05254209,
IIS-REU: 0647120, and IIS-REU: 0647018.

References

[1] Hawkins, S., He, H., Williams, G., and Baxter, R., “Outlier
Detection Using Replicator Neural Networks”, Proc. of the Fifth
Int’l Conference Data Warehousing and Knowledge Discovery,
pp.170-180, 2002.
[2] Knorr, E., Ng, R., and Tucakov, V., “Distance-based
outliers: Algorithms and applications”, VLDB Journal, 2000.
[3] Bolton, R.J., Hand, D.J., “Statistical fraud detection: A
review”, Statistical Science, 17, pp. 235–255, 2002.
[4] Penny, K.I., Jolliffe, I.T., “A comparison of multivariate
outlier detection methods for clinical laboratory safety data”,

The Statistician, Journal of the Royal Statistical Society, 50, pp.
295–308, 2001.
[5] He, Z., Deng, S., Xu, X., “An Optimization Model for
Outlier Detection in Categorical Data”, Proc. of 2005
International Conference on Intelligent Computing (ICIC’05),
pp.400-409, 2005.
[6] He, Z., Xu, X., Huang, J., Deng, J., “FP-Outlier: Frequent
Pattern Based Outlier Detection”, Computer Science and
Information System, pp. 103-118, 2005.
[7] He, Z., Deng, S., Xu, X., “A Fast Greedy algorithm for
outlier mining”, Proc. of PAKDD, 2006.
[8] Otey, M.E., Ghoting, A., Parthasarathy, A., “Fast
Distributed Outlier Detection in Mixed-Attribute Data Sets”,
Data Mining and Knowledge Discovery, 2006.
[9] Barnett, V., Lewis, T. Outliers in Statistical Data. John
Wiley, 1994.
[10] Hodge, V., Austin, J., “A Survey of Outlier Detection
Methodologies”, Artificial Intelligence Review, pp. 85, 2004.
[11] Ruts, I., Rousseeuw, P., “Computing depth contours of
bivariate point clouds”, Comput. Stat Data Anal, pp. 153, 1996.
[12] Bay, S.D. Schwabacher, M., “Mining distance-based
outliers in near linear time with randomization and a simple
pruning rule”, Proc. of ACM SIGKDD Int’l Conf. on Knowledge
Discovery and Data Mining, 2003.
[13] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J.,
“LOF: Identifying density-based local outliers”, Proc. of the
ACM SIGMOD Int’l Conference on Management of Data, 2000.
[14] Papadimitriou, S., Kitawaga, H., Gibbons, P., Faloutsos,
C., “LOCI: Fast outlier detection using the local correlation
integral”, Proc. of the Int’l Conf. on Data Engineering, 2003.
[15] Wei, L., Qian, W., Zhou, A., Jin, W., “HOT: Hypergraph-
based Outlier Test for Categorical Data”, Proc. of 7th Pacific-
Asia Conference on Knowledge Discovery and Data Mining
PAKDD, pp. 399-410, 2003.
[16] Tax, D., Duin, R., “Support Vector Data Description”,
Machine Learning, pp. 45–66, 2004.
[17] Harkins, S., He, H., Williams, G., Baster, R., “Outlier
Detection Using Replicator Neural Networks”, DaWaK’02, pp.
170-180, 2002.
[18] Pei, Y., Zaiane, O., Gao, Y., “An Efficient Reference-
based Approach to Outlier Detection in Large Dataset”, IEEE
Int’l Conference on Data Mining, 2006.
[19] Agrawal, R., Srikant, R., “Fast algorithms for mining
association rules”, Proc. of the Int’l Conference on Very Large
Data Bases VLDB, pp. 487–499, 1994.
[20] Xu, Y.J., Qian, W., Lu, H., Zhou, A., “Finding centric
local outliers in categorical/numerical spaces”, Knowledge
Information Systems, 9, pp. 309–338, 2006.
[21] Shannon, C.E., “A mathematical theory of
communication”, Bell System Technical Journal, pp. 379, 1948.
[22] Blake, C., Merz, C. UCI machine learning repository:
www.ics.uci.edu/~mlearn/MLRepository.html.
[23] Cristofor, D., Simovici, D., “Finding Median Partitions
Using Information-Theoretical Algorithms”, Journal of
Universal Computer Science, 8, pp. 153-172 (software at
http://www.cs.umb.edu/~dana/GAClust/index.html).

