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Abstract 
 

Outlier detection has received significant attention in 
many applications, such as detecting credit card fraud or 
network intrusions. Most existing research focuses on 
numerical datasets, and cannot directly apply to 
categorical sets where there is little sense in calculating 
distances among data points. Furthermore, a number of 
outlier detection methods require quadratic time with 
respect to the dataset size and usually multiple dataset 
scans. These characteristics are undesirable for large 
datasets, potentially scattered over multiple distributed 
sites. In this paper, we introduce Attribute Value 
Frequency (AVF), a fast and scalable outlier detection 
strategy for categorical data. AVF scales linearly with the 
number of data points and attributes, and relies on a 
single data scan. AVF is compared with a list of 
representative outlier detection approaches that have not 
been contrasted against each other. Our proposed 
solution is experimentally shown to be significantly faster, 
and as effective in discovering outliers. 

 
 
1. Introduction 
 

Mining for outliers in data is an important research 
field with many applications in credit card fraud 
detection, discovery of criminal activities in electronic 
commerce, and network intrusion detection. Outlier 
detection approaches focus on discovering patterns that 
occur infrequently in the data, as opposed to traditional 
data mining techniques that attempt to find patterns that 
occur frequently in the data. One of the most widely 
accepted definitions of an outlier pattern is provided by 
Hawkins [1]: “An outlier is an observation that deviates 
so much from other observations as to arouse suspicion 
that it was generated by a different mechanism”.  

Outliers are frequently treated as noise that needs to be 
removed from a dataset in order for a specific model or 
algorithm to succeed (e.g. points not belonging in clusters 
in a clustering algorithm). Alternatively, outlier detection 

techniques can lead to the discovery of important 
information in the data (“one person’s noise is another 
person’s signal”) [2]. Finally, outlier detection strategies 
can also be used for data cleaning before any traditional 
mining algorithm is applied to the data.  Examples of data 
where the discovery of outliers is useful include irregular 
credit card transactions, indicating potential credit card 
fraud [3], or patients who exhibit abnormal symptoms due 
to their suffering from a specific disease or ailment [4]. 

Most of the research efforts in outlier detection 
strategies have focused on datasets that are comprised of 
numerical attributes, or ordinal attributes that can be 
directly mapped into numerical values. Quite often, when 
we have data with categorical attributes it is assumed that 
the categorical attributes could be easily mapped into 
numerical values. However, there are cases of categorical 
attributes, where mapping to numerical attributes is not a 
straightforward process, and the results greatly depend on 
the mapping that is used, e.g., the mapping of a marital 
status attribute (married or single) or a person’s 
profession (engineer, financial analyst, etc.) to a 
numerical attribute.  

Recently there has been some focus on data with 
categorical or mixed attributes (e.g. He et al. [5],[6],[7], 
and Otey et al. [8]). However these efforts have not been 
contrasted to each other using the same data. In this paper, 
we explore these methods and evaluate them using the 
same datasets with regard to their efficiency (speed), 
scalability, and effectiveness (accuracy) in detecting 
outliers in categorical data. 

Another issue that has only recently become the focus 
in the literature is related to the large and distributed 
nature of the datasets available today. With the explosion 
of technology, the size of data for a particular application 
has grown and will continue to grow. Also, most of the 
data is distributed among different sites belonging to the 
same or even different organizations. Transferring data to 
a central location and then detecting outliers is typically 
impractical due to data size and expense of moving it, as 
well as data ownership and control issues. Hence, 
successful outlier detection strategies must scale well as 
the size and dimensionality of the dataset grow. 



Furthermore, in order to deal with the large and possible 
distributed nature of the data, the dataset scans should be 
minimal as well.  

In this paper, we introduce an outlier detection strategy 
for categorical data, called Attribute Value Frequency 
(AVF). We compare AVF with existing outlier detection 
methods ([5],[6],[7],[8]) with respect to outlier detection 
speed and accuracy. AVF is experimentally shown to 
have a significant performance advantage, and to scale 
linearly as the data increases in points and dimensions. 
AVF does not depend on extra user parameters, and 
performs only one dataset scan, thus would be efficient 
for geographically distributed data.  

The organization of this paper is as follows: In Section 
2, we provide a thorough literature review. In Section 3, 
we describe our proposed algorithm, AVF, and the outlier 
detection algorithms mentioned above. Section 4 contains 
our experiments and results. Finally, in Section 5, we 
summarize our work and provide concluding remarks. 
 
2. Previous Work 
 

The earliest approaches to detect outliers, statistical-
model based methods, assume that a parametric model 
describes the distribution of the data (e.g., normal 
distribution), and are mostly single-dimensional or 
univariate [9]. The limitations of these approaches include 
the difficulty to find the right model for each dataset and 
application, as well as the fact that their efficiency 
declines as the data dimensionality increases [8]. Another 
issue with high dimensional datasets is that the dataset 
become less dense, which makes the convex hull harder to 
determine (“Curse of Dimensionality”)[10]. There are 
methods to help alleviate this problem, e.g. Principal 
Component Analysis. Another idea to handle higher 
dimensionality data is to organize the data points in 
layers, based on the idea that shallow layers tend to 
contain outliers more often than the deep layers (e.g. 
[10]), these ideas however are impractical for more than 2 
dimensions. 

Distance-based approaches do not make assumptions 
for the distribution of the data since they essentially 
compute distances among points. These approaches 
become impractical for large datasets (e.g. nearest 
neighbor method has quadratic complexity with respect to 
the dataset size). There have been improvements on the 
original distance-based algorithms, e.g. Knorr et al. [2], 
where an outlier is defined as an object O in a dataset T 
that has at least p% of the objects in T further than 
distance D from it. The complexity of their approach is 
still exponential in the number of nearest neighbors. Bay 
and Schwabacher [12] propose a distance-based method 
and claim its complexity is close to linear in practice. 

 
Figure 1. Distance-based methods miss outlier o2 [13] 

 
Clustering techniques can be used with the idea that 

the points that do not belong in the formed clusters are 
designated as outliers. However, clustering-based 
methods are focused on optimizing clustering measures of 
goodness, and not on finding the outliers in the data [2]. 

Density-based methods estimate the density 
distribution of the data and identify outliers as those lying 
in low-density regions. Breunig et al. [13] assign a local 
outlier factor (LOF) to each point based on the local 
density of its neighborhood, which is determined by a 
user-given minimum number of points (MinPts). 
Papadimitriou et al. [14] present LOCI (Local Correlation 
Integral) which uses statistical values based on the data 
itself to tackle the issue of choosing values for MinPts. 
All density-based techniques have the advantage that they 
can detect outliers that would be missed by techniques 
with a single, global criterion, as shown in Figure 1. 
However, data is usually sparse in high-dimensional 
spaces rendering density-based methods problematic [15]. 

Other outlier detection efforts include Support Vector 
methods (e.g. [16]), using Replicator Neural Networks 
(RNNs) [17], and using a relative degree of density with 
respect only to a few fixed reference points [18].  

All the aforementioned methods are geared towards 
numerical data and thus are more applicable to numerical 
datasets or ordinal data that can be easily transformed to 
suitable numerical values [10]. In the case of categorical 
datasets, there is little sense of ordering the data values, 
then mapping them to numerical values and computing 
distances (e.g., distance between two values such as TCP 
Protocol and UDP Protocol [8]). Consequently, methods 
such as those based on distance or density are unsuitable. 
Also many previous methods are quadratic in complexity 
with respect to the data size, which would be 
unacceptable for large datasets. If we assume a distributed 
setting, techniques relying on pair-wise distance 
computations become infeasible as the different sites 
would have to either exchange every local data point in 
order to calculate distances or replicate all data points 
globally.  

In this paper, we implement and experiment with three 
current outlier detection approaches directed towards 
categorical data. The first is proposed by He et al. [7] and 
is based on the idea of Entropy. The second technique by 
Otey et al. [8] focuses on datasets with mixed attributes 
(both categorical and numerical). The third technique in 



[6] is also by He et al. Both methods by He [6] and by 
Otey [8] compute an outlier score for each data point 
using the concept of frequent itemsets (see [19]). Wei et 
al. [15] also deal with outliers in categorical datasets and 
use frequent itemsets, as well: they use hyperedges, which 
simply store frequent itemsets along with the data points 
that contain these frequent itemsets; since their method is 
based on a premise similar to that in [6], it was not 
considered in our experiments. Finally, Xu et al. [20] use 
mutual reinforcement to discover outliers in a mixed 
attribute space; however their method focuses on a 
different outlier detection problem than the one described 
in this paper (“instead of detecting local outliers as noise, 
[they] identify local outliers in the center, where they are 
similar to some clusters of objects on one hand, and are 
unique on the other.”[20]). 

 
Table 1. Terminology 

Term Description 
k  Target input number of outliers 
n  Number of data points 
m  Number of attributes for each data point 
q  Number of Distinct values per attribute 
l  A specific attribute (ranging from 1 to m ) 

ix  The i-th point in the dataset 
ilx  The l-th value of the i-th point in the dataset 

D Dataset 
I Itemset 
F Frequent Itemset 
FIS The Set of all Frequent Itemsets  
Minsup Minimum support for the frequent itemsets 
support(I ) Support of itemset I 
 
 

3. Algorithms 
 
3.1. Greedy Algorithm 
 

The algorithms in [5],[7] are based on the premise that 
outliers are likely the points that, once removed from the 
data, the dataset as a whole has less “uncertainty” or 
“disorder”. In particular, they propose the idea of finding 
a small subset (of size k) of the data points that contribute 
to the elevated “disorder” of the dataset the most. The 
idea of Entropy, or uncertainty, of a random variable is 
attributed to Shannon [21]. Formally, if X is a random 
variable, S (X) is the set of values that X can take, and 
p(x)  is the probability function of X, then the entropy, 

),(XE  can be defined as follows:  
)(log)()(

)(
2 xpxpXE

XSx
∑

∈
−=                  (1) 

Given a multivariate vector, X = {X1, X2, …, Xm} (or a 
multidimensional dataset containing m attributes) and the 
assumption that the attributes of X are independent, the 

Entropy of X, E(X ), is equal to the sum of the entropies of 
each one of the m attributes, and is defined as follows:  

)()()()( 21 mXEXEXEE +++=X          (2) 
He et al. introduce a Local-Search heuristic-based 

Algorithm (LSA) in [5], and a Greedy Algorithm in [7], 
both relying on the entropy idea mentioned above. Since 
the Greedy algorithm [7] is superior to LSA [5], we will 
only discuss the Greedy algorithm. The Greedy algorithm 
[7] takes as input the desired number of outliers (k). All 
points in the set are initially designated as non-outliers. At 
the beginning, the frequencies of all attribute values are 
computed, as well as the initial entropy of the dataset. 
Then, Greedy conducts k scans over the data to determine 
the top k outliers. During each scan, every non-outlier is 
temporarily removed from the dataset and the total 
entropy is recalculated. The non-outlier point that results 
in the maximum decrease for the entropy of the entire 
dataset is the outlier data-point removed by the algorithm 
in each scan.  

The complexity of Greedy is )***( qmnkO , where k  
is the target number of outlier points, n designates the 
number of points in the dataset, m  is the number of 
attributes, and q  is the number of distinct attribute 
values, per attribute. If the number of attribute values per 
attribute, q , is small, the complexity of Greedy becomes 

)**( mnkO . Pseudocode for Greedy is provided in 
Figure 3. 

 
3.2. Frequent Itemset Mining (FIM)-based 
Algorithms 
 

In this section, we describe two algorithms based on 
the concept of Frequent Itemset Mining. Frequent Itemset 
Mining (FIM) has received considerable attention since 
the seminal paper on the related subject of Association 
Rule Mining by Agrawal and Srikant [19]. Given a dataset 
D and a set of r literals, S = {i1,i2,…,ir} that are found in 
D, we can define an itemset I as a non-empty subset of S. 
For example, items in a supermarket could be “bread”, 
“milk”, etc; then a possible itemset I could be {“bread”, 
“milk”}. Given a user-defined threshold called minimum 
support, minsup, a frequent itemset F is one that appears 
in the dataset at least minsup times. The set of all frequent 
itemsets given minsup is denoted by FIS. The support of 
an itemset I, designated as support(I), is the fraction of 
points in D that contain itemset I. 

 He et al. in [6] observe that, since frequent itemsets 
are “common patterns” that are found in many of the 
points of the dataset, outliers are likely to be the points 
that contain very few common patterns or subsets. They 
define a Frequent Pattern Outlier Factor (FPOF) for 
every data point, x, based on the support of the frequent 
itemsets contained in x. In addition, they use a 
contradictness score to better explain the outliers and not 



to detect the outliers, so it is omitted from our discussion. 
The FPOF outlier score is calculated as follows: 

FIS

F
xScoreFPOF FISFxF

∑
∈⊆= ,

)support(
)(          (3) 

The above score is the sum of the support of all the 
frequent subsets F contained in point x, over the number 
of all frequent sets in dataset D, FIS. Data points with 
lower FPOF scores are likely to be outliers since they 
contain fewer common subsets. The FPOF algorithm runs 
the Apriori algorithm [19] first, to identify all frequent 
itemsets in dataset D given minsup (FIS), then calculates 
the outlier score in (3) for each data point, to identify the 
top k outliers (see pseudocode  in Figure 4). 

The method by Otey et al. in [8] is also based on 
frequent itemsets. They assign to each point an anomaly 
score inversely proportionate to its infrequent itemsets. 
They also maintain a covariance matrix for each itemset 
to handle continuous attributes; we omit this part since 
our focus is on categorical data. Specifically, they 
calculate the following score for each data point x: 

||
1)('

)(sup, I
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which is explained as follows: given subsets I of x  which 
are infrequent, i.e. support of I is less than minsup, the 
anomaly score of x will be the sum of the inverse of the 
length of the infrequent itemsets. If a point has few 
frequent itemsets, its outlier factor will be high, so the 
outliers are the k points with the maximum outlier score in 
(4). This algorithm also first mines the data for the 
frequent itemsets, then calculates an outlier score for each 
point (see pseudocode in Figure 5). The authors state that 
the execution time is linear to the number of data points, 
but exponential to the number of categorical attributes. 
 
3.3. Attribute Value Frequency (AVF) Algorithm 
 

The algorithms discussed thus far scale linearly with 
respect to the number of data points, n. However, Greedy 
(section 3.1) still needs k scans over the dataset to find k 
outliers, a disadvantage for the case of very large datasets 
that are potentially distributed among different sites. On 
the other hand, the Frequent Itemset Mining (FIM)-based 
approaches (section 3.2) need to create a potentially large 
space of subsets or itemsets, and then search for these sets 
in each and every data point. These techniques can 
become extremely slow for low values of the minsup 
threshold, as more and more candidate itemsets need to be 
examined. In this section we present a simpler and faster 
approach to detect outliers that minimizes the scans over 
the data and does not need to create or search through 
different combinations of attribute values or itemsets. We 

call this outlier detection algorithm Attribute Value 
Frequency (AVF) algorithm. 

It is intuitive that outliers are those points which are 
infrequent in the dataset. Additionally, an ‘ideal’ outlier 
point in a categorical dataset is one whose each and every 
attribute value is extremely irregular (or infrequent). The 
infrequent-ness of an attribute value can be measured by 
computing the number of times this value is assumed by 
the corresponding attribute in the dataset.  

Let’s assume that the dataset contains n data points, xi , 
i = 1…n. If each data point has m attributes, we can write 
xi = [xi1,…,xil,…,xim], where xil is the value of the l-th 
attribute of xi. Following the reasoning given above, a 
good indicator or score to decide if point xi is an outlier 
can be defined as the AVF Score below:  

∑
=

=
m

l
ili xf

m
xScoreAVF

1
)(1)(                   (5)  

where, f (xil ) is the number of times the l-th attribute value 
of xi appears in the dataset. A lower AVF score means 
that it is more likely that the point is an outlier. The 
choice for the AVF score can be justified by noting the 
following. Since in (5) we essentially have a sum of m 
positive numbers, the AVF score is minimized when each 
of the sum’s terms are individually minimized. Thus for 
an ‘ideal’ outlier as defined above, the AVF score will be 
the minimum. Figure 2 contains an example with 12 
points taken from UCI [22] Breast Cancer dataset. The 
outliers are in bold (points 7 and 12). As this example 
clearly illustrates, the outliers have infrequent values for 
all or most of the 9 attributes, compared to the rest of the 
data points.  
 

Attributes Data 
point 1 2 3 4 5 6 7 8 9 

1 1 1 1 1 2 10 3 1 1 
2 2 1 1 1 2 1 2 1 1 
3 1 1 1 1 2 3 3 1 1 
4 4 1 1 1 2 1 2 1 1 
5 4 1 1 1 2 1 3 1 1 
6 6 1 1 1 2 1 3 1 1 
7 7 3 2 10 5 10 5 4 4 
8 3 1 1 1 2 1 2 1 1 
9 1 1 1 1 2 1 3 1 1 
10 3 2 1 1 1 1 2 1 1 
11 5 1 1 1 2 1 2 1 1 
12 2 5 3 3 6 7 7 5 1 

Figure 2. Example from UCI Breast Cancer Dataset 
 
Once we calculate the AVF score of all the points, we 

designate the k points with the smallest AVF scores as the 
k outliers (see Figure 6 for AVF pseudocode). The 
complexity of AVF is O(n*m) compared to Greedy’s 
complexity, O(k*n*m), since AVF detects outliers after 
only one scan of the dataset, instead of the k scans needed 
by Greedy. 



Input: Dataset – D 
 Target number of outliers – k 
Output: k detected outliers 
Label all data points as non-outliers 
calculate frequency of each attribute value 
calculate initial entropy of dataset 
while ( not k scans) do 
   while (not end of database) do 
       read next record x and label x as outlier 
       calculate decrease in entropy by removing x 
   end while 
   if (maximal decrease achieved by record x) 
       add x to set of outliers 
   end if 
end while 

Figure 3. Greedy Algorithm Pseudocode 
 

Input: Dataset – D 
 Minimum support – minsup 
 Target number of outliers – k 
Output: k detected outliers 
FIS = Mine for frequent item sets (D, minsup) 
foreach point x in D 
   foreach frequent pattern F  in FIS 
      if x contains F 
          FPOFoutlierScore(x) += support(F)/ length(FIS) 
      end if 
   end for  
end for  
return top k outliers that minimize FPOFoutlierScore 

Figure 4. FPOF Algorithm Pseudocode 
 

Input: Dataset – D 
 Minimum support – minsup 
 Target number of outliers – k 
Output: k detected outliers 
FIS = Mine for frequent itemsets(D, minsup)  
foreach point x in D 
   foreach itemset I ∈ x 
      if FIS does not contain I 
         Otey’s outlierScore(x) +=  1/ length(I) 

end if 
end for 
return k outliers that maximize outlierScore 

Figure 5. Otey's Algorithm Pseudocode 
 

Input: Dataset – D 
 Target number of outliers – k 
Output:  k detected outliers 
Label all data points as non-outliers 
calculate frequency of each attribute value 
foreach point x 
    AVFscore = Sum(frequency each attrib. value ∈ x)/m 
end foreach 
return top k outliers with minimum AVFscore 

Figure 6. AVF Algorithm Pseudocode 
 

4. Experiments 
 

4.1. Experimental Setup 
 
We conducted all our experiments on a workstation 

with a Pentium 4 2.6 GHz processor and 1.5 GB of RAM. 
We implemented all algorithms in C++ and ran our own 
implementation of Apriori [19] for mining frequent 
itemsets for FPOF and Otey’s algorithms (minsup=10%). 
We experimented with 5 real datasets from the UCI 
Machine Learning repository [22], as well as artificially 
generated datasets. An advantage of using artificially 
generated data is the capability to work with datasets of 
various sizes and dimensionalities.  
A. Real Datasets (UCI): 
- Wisconsin Breast Cancer: This dataset has 699 points 
and 9 attributes. Each record is labeled as either benign or 
malignant. Following the method by Harkins et al. [17], 
we only kept every sixth malignant record, resulting in 39 
outliers (8%) and 444 non-outliers (92%).  
− Lymphography: This dataset contains 148 instances and 
19 attributes including the class attribute. There are 4 
classes where classes 1 and 4 comprise 4% of the data, so 
they are considered as the outliers. 
− Post-operative: This dataset is used to determine where 
patients should go to after a postoperative unit (to 
Intensive Care Unit, home, or general hospital floor). It 
contains 90 instances and 9 attributes, including the class. 
We regard class 1 and 2 as outliers (26 points total). 
− Pageblocks: It contains 5,473 instances with 10 
attributes. There are 5 classes, where one class is about 
90% of dataset, so the rest of the data can be thought of as 
outliers. We discretized the continuous attributes using 
equal-frequency discretization, and removed half of the 
outliers so that we have a more imbalanced dataset (i.e., 
280 outliers). 
− Adult: This dataset has 48,842 points and 14 attributes. 
We discretized the numerical attributes using equal width 
discretization, and regarded as outliers the points with 
income more than $50K/year (about 24% of the dataset). 
We only kept every sixth point to make the dataset more 
imbalanced. 
B. Artificial Datasets: The experiments conducted with 
the simulated data were used to showcase the speed and 
associated scalability of the algorithms that we are 
evaluating, and not their detection rates/capabilities 
(effectiveness). The simulated dataset used was created 
using available software by Cristofor [23]. The idea 
behind these experiments is to see the change of each 
algorithm’s performance as parameters change (e.g., an 
important parameter is the size of the dataset, n). Another 
parameter with which we experimented is m, the dataset 
dimensionality. For example, Greedy calculates the 
Entropy for each dimension of each data point. Finally, it 
is worth mentioning that Greedy algorithm also depends 



on the input number of outliers, k, while the other 
algorithms do not. For the first experiment we used a 
dataset with 10 attributes and input number of outliers, 
k=30, and 1K to 800K data points. For the second 
experiment, the dataset has 100K points and 10 attributes, 
and the outlier target number k varies from 1 to 1K. For 
the last experiment, the outlier number k is set to 30, the 
dataset contains 100K points, and the number of attributes 
is varied from 2 to 40. 

 
4.2. Results and Discussion 

 
Table 2 and Figure 7 depict the outliers detected by 

each algorithm using the real datasets (Figure 7 contains 
only the results for 3 sets due to space). As we see in the 
experiments with the real datasets, the outlier detection 
accuracy of AVF is the same as, or very close to Greedy. 
For example, in Figure 7(a), all algorithms converge to 
the 39 outliers for k equal to 56. While we notice similar 
accuracy in detecting outliers for all algorithms for the 
breast cancer, lymphography, and post-operative patients 
datasets (Figure 7(a)-(c)), for the other two datasets 
(Table 2(d)-pageblocks and Table 2(e)-adult), AVF has 
lower accuracy than Greedy, while FPOF and Otey’s have 
much lower accuracy (e.g. in Table 2(d) for k=900 
Greedy detects 242 outliers, AVF detects 223, while 
FPOF and Otey’s detect only 116).  

Table 3 contains the runtime performance of all 
algorithms using the first simulated dataset, with varying 
number of data points, n (see also Figure 8(a)). For 
example, in Table 3, for n=700K, Greedy finishes 
execution at around 185 seconds, Otey’s methods at 
around 3127 seconds, FPOF at 564 seconds, while AVF 
has a running time of 1.33 seconds. Further experiments 
(not shown due to space limitations) with larger 
dimensionalities than in Figure 8(c) showed similar 
results for AVF: e.g. for a dataset 150 attributes (k=30, 
n=100K), AVF had a running time of about 2 seconds. 

As we see from these results with real and artificially 
generated data, AVF approximates very well the outlier 
detection accuracy of Greedy, while it outperforms 
Greedy for larger values of the data size, n, data 
dimensionality, m, and the target number of outliers, k. 
E.g., Greedy becomes exceedingly slow for larger n 
values (Figure 8(a)), due to the increasingly more 
expensive entropy calculations. AVF’s performance does 
not change notably for larger k values, and it runs 
significantly faster than Greedy with respect to both n and 
m, as AVF relies on simple calculations for each point. 
The FIM-based methods also become increasingly slower 
for larger datasets (see Figure 8(a)), as they need to search 
through all possible subsets of each and every point. 
Higher dimensionalities of the datasets slow down these 
two algorithms as well, because of the increasingly larger 
itemsets that are created as the number of attributes grows 
(see Figure 8(c)). The authors in [6] and [8] discussed 

using a parameter for the maximum length of itemsets; for 
example, if the user enters 5 as the max length, the 
itemsets created contain 5 items or less. However, 
experiments in [8] show that this negatively effects their 
algorithmic accuracy.  

 
Table 2. Results on the Real Datasets 

(a) Breast Cancer 
k  Greedy AVF FPOF Otey’s 
4 4 4 3 3 
8 8 7 7 7 

16 15 14 14 15 
24 22 21 21 21 
32 29 28 27 28 
40 33 32 31 33 
48 37 36 35 37 
56 39 39 39 39 

(b) Lymphography 
k  Greedy AVF FPOF Otey’s 
2 2 2 2 2 
4 4 4 4 4 
6 5 4 4 4 
8 6 5 5 5 

12 (13) 6 6 5 5 (6) 
15 6 6 6 6 

(c) Post-Operative 
k  Greedy AVF FPOF Otey’s 
10 4 3 3 1 
20 7 7 7 7 
30 8 10 9 9 
40 12 11 10 10 
50 13 12 12 13 
60 20 16 17 18 
70 21 21 21 21 
80 24 24 24 24 

(d) Pageblocks 
k  Greedy AVF FPOF Otey’s 

100 45 40 19 19 
200 81 84 42 42 
300 130 120 63 63 
400 157 168 74 74 
500 177 189 80 80 
600 183 201 94 94 
700 213 206 96 96 
800 237 214 110 110 
900 242 223 116 116 

1000 242 233 121 121 

(e) Adult 
k  Greedy AVF FPOF Otey’s 

100 24 27 21 16 
200 41 45 42 37 
300 69 71 64 54 
400 87 88 82 66 
500 107 104 89 77 
600 124 116 114 96 
700 147 139 137 112 
800 171 164 148 139 



 
(a) Breast Cancer 

 
(b) Lymphography 

 
(c) Post-Op 

Figure 7. Actual Outliers Detected vs. Input Number 
of Target Outliers, k, on real datasets 

 
Table 3. Runtime in seconds for the simulated datasets 
with varying data size, n, from 1K to 800K data points 

Data Size  
(thousands) Greedy AVF FPOF Otey’s 

1 0.27 0.00 0.81 4.58 
10 2.72 0.03 8.13 44.72 
30 8.53 0.06 24.02 134.30 
50 14.31 0.09 40.19 222.88 
100 26.42 0.19 81.06 445.39 
200 52.75 0.39 165.08 891.28 
300 79.39 0.58 241.61 1337.06 
400 106.14 0.80 323.97 1781.78 
500 131.75 0.94 404.45 2233.74 
600 158.70 1.16 484.00 2678.73 
700 184.94 1.33 564.80 3127.22 
800 212.08 1.56 667.55 3568.55 

  
(a) Data Size, n, increases 

   
(b) k increases 

  
(c) Number of Attributes, m, increases 

Figure 8. Performance for simulated data as various 
parameters increase (milliseconds)  

 
 
In addition, the algorithms based on Frequent Itemsets, 

specifically FPOF and Otey’s, depend on the user-entered 
minimum support threshold. In fact, different values of 
minsup lead to improved accuracy of FPOF and Otey’s. 
For example, using the pageblocks data and k=200 (see 
Table 2(d)), Otey’s method with minsup=0.04 detected 
120 outliers, while for minsup=0.03, it detects 51 outliers. 
This is because lower minsup values will create more 
frequent sets, while higher minsup values will make more 
subsets infrequent.  Also, lower minsup values make the 
algorithms increasingly slower as more frequent itemsets 
need to be created. This illustrates the challenge of 
selecting an appropriate minimum support threshold. 

The advantages of AVF are that it does not create 
itemsets and that it entails only a single pass over the 



entire dataset. Also, as shown from the experiments with 
the simulated datasets, the runtime of AVF increases 
particularly slowly with respect to n and m, in comparison 
to the other three algorithms. Moreover, AVF eliminates 
the need for difficult choices for any user-given 
parameters such as minimum support or maximum 
itemset length. However, experimentation with some 
small datasets showed that the single scan of the data may 
cause AVF to miss a few outliers that Greedy finds. This 
effect was negligible in the real datasets with which we 
experimented in this paper. We are examining a number 
of avenues to increase the outlier detection accuracy of 
AVF, but at the expense of declining performance.  
 
5. Conclusions 

 
We have compared and experimented with a 

representative list of currently available techniques for 
outlier detection in categorical datasets, using both real 
and artificially generated data. These methods have not 
been compared against each other before using the same 
datasets. We have proposed a scalable and effective 
outlier detection technique, called AVF (Attribute Value 
Frequency). AVF lends itself to the nature of datasets 
today, as its performance does not deteriorate given large 
datasets or datasets of higher dimensionality. Specifically, 
AVF has the following advantages: 
– A computational complexity of O(n*m), where n is the 

number of points, and m is the data dimensionality, 
– AVF’s performance does not rely on user-specified 

parameters such as minimum support, 
– AVF scans the dataset only once to detect the desired 

outliers, i.e. the number of data scans needed by AVF is 
not influenced by the input number of target outliers, k, 

– AVF is significantly faster than existing representative 
techniques against which we compared it, while 
maintaining virtually equal detection accuracy. 

One of the limitations of AVF, mentioned at the end of 
the previous section, and how to overcome it, is the topic 
of some of our future work. 
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